Better performance for less hassle —
that's the advantage of a new message-
passing library developed at Ames
Laboratory. The library, called
MP_Lite, makes it possible to extract
optimum performance from both
workstation and personal computer
clusters, as well as from large
massively parallel computers. It
supports and enhances the basic
capabilities that most software
programs require to communicate
between computers.

Fewer and faster

MP_Lite might be thought of as a
“slimmed-down” version of the
message-passing interface, or MPI,
standard, a widely used model that
standardizes the syntax and
functionality for message-passing
programs, allowing a uniform interface
from the application to the underlying
communication network. The MPI
standard eases the parallel
programming task by providing a
common syntax for communicating
between computers, making codes
portable between widely varying
supercomputers.

22[[!|quiry2002

The full MPI standard contains
many options that most people don’t
use very often. MP_Lite offers only
the core functions of MPI, which are
enough for most codes. The emphasis
is put on implementing these
functions in the most efficient manner,
providing all the performance without
all the extra options. “After all, a
Corvette will go fast and look good
even without a CD player and electric
seats,” says Dave Turner, an Ames
Laboratory computational scientist
and the principal investigater for the
MP_Lite project.

Perfecting performance
MP_Lite could be scaled up easily,
but its objective is not to provide all
the capabilities of the full MPI
standard. “Our goal with MP_Lite is
to illustrate how to get better
performance in a portable and user-
friendly manner and to understand
exactly where any inefficiencies in the
MPI standard may be coming from,”
says Turner. He explains that the
MP_Lite library is smaller and much
easier to work with than full MPI
libraries. “It’s ideal for performing

Done Right

New parallel library succeeds by going easy on the extras

by Saren Johnston

message-passing research that may
eventually be used to improve full MPI
implementations and possibly
influence the MPI standard,” he says.
Turner notes that it was “mainly
frustration” that led him to develop
the MP_Lite library. “Most message-
passing packages are large and clunky
to work with, and can be difficult to
install and optimize. If you run into
any errors at all, they give you very
cryptic messages that mean nothing
unless you actually wrote the library,”
he says. “So alot of the reason I got
into this project was not just to
improve the efficiency, but also to
improve performance — make the
message-passing more user-friendly.”
Offering an example, Turner says, “If
two processors are communicating, and
one waits a minute for a response from
the other one — well, a minute is a very
long time in this context — the library
should put out a warning into a log file.
But that's something that’s not done.
Most message-passing systems don’t
tell you what's wrong if a
communication buffer overflows or a
node is waiting for a message that
never gets sent. What if there’s a five-



Dave Turner shows how the MP_Lite
library is organized in this simplified
sketch. Running beneath a full MPI
implementation, such as Argonne’s
MPICH, MP_Lite can pass on its
efficiency and performance to the
larger library.

minute wait for a message?” he
continues. “Something is probably
frozen up, so at that point the library
should implement an abort and give
the user as much information about the
current state of the system as possible.”

Turner notes that MP_Lite operates
with minimal buffering and warns if
there are any potential problems.
When possible, MP_Lite will dump
warnings to a log file and eventually
time out when a lockup occurs.
“There’s a lot of these user-friendly
aspects that I'd like to see put into
other message-passing systems,” he
says. “That’s one area that doesn’t get
focused on very often.

“Many of the people developing
parallel library codes don’t necessarily
use them, and it’s not in the MPI
standard that you have to make them
user-friendly,” Turner continues.
“They’re getting paid to add

MPI Applications

restricted to a subset
of the MPI commands

\

functionality. For them performance
and usability have been almost a second
consideration, which is unfortunate.”

Pufting on the “squeeze”
Turner says MP_Lite was “born out
of a need to squeeze every bit of
performance from the interprocessor
communication between nodes in
personal computer or workstation
clusters, where the Fast Ethernet and
even Gigabit Ethernet speeds are
much slower than communication
rates in traditional massively parallel
processing systems.” This is due to
the fact that although massively
parallel systems have processors very
similar to those of PCs or
workstations, they also have more
customized communications systems
that allow faster communication rates.
“In PC and workstation clusters,
we’re catching up to where we're
getting at least closer to those rates, but
we still need to squeeze everything out
that we can,” says Turner. “So one of
the things that I do is look for where
we can squeeze it out. Is it at the
message-passing level; in the operating
system, itself; or in the driver
implementations — there’s a lot of

MP_Lite syntax

MP_Lite ]

TCP
workstations
PCs

VIA
OS-bypass

Giganet hardware Mixed system

distributed
SMPs

M-VIA Ethernet

SMP
shared-memory
segment

MPI
to retain portability
for MP_Lite syntax

SHMEM
one-sided
functions

Cray T3E

SGI Origins

MP_Lite delivers nearly the full range of performance as the underlying communication
layer, and does so in a portable and user-friendly manner. It can be run on top of
transmission control protocol, or TCP, on clusters of workstations; the high-
performance, native SHMEM library on Cray T3E and SGI Origin systems; and on
any system where MPI is installed to retain complete portability. Performance is
achieved by keeping everything simple and clean.

evaluation in the whole message-
passing, or communication, hierarchy
that's involved in the MP_Lite project.”

In addition to enhancing
performance, another goal Turner has
for MP_Lite is to tie it directly to a full
MPI library. To do so, he’s been
working with the Department of
Energy’s Argonne National Laboratory
and running their MPICH library on
top of MP_Lite. “By doing this, we
can pass the good performance of
MP_Lite on to the full MPI
implementation,” he says. “So we
combine the best of both, keeping the
efficiency of my library and the greater
functionality of Argonne’s.”

Turner says he named the library
MP_Lite for several reasons. The small
size of the library’s code makes it easy
to install anywhere — it compiles in
under a minute. There’s much less
code, so it’s more streamlined than
MPI. It can also be easily modified to
include more of the full MPI functions.
And MP_Lite has its own syntax, which
is simpler and can be used in place of
the MPI syntax. Of course, there’s
always the fun of the clever response
Turner is able to make to people who
say to him, “I use this MPI function;
why isn’t it in your library?” He simply
replies, “Well, it’s ‘lite.” ”

MP_Lite is on the World Wide Web
at http://www.scl.ameslab.gov Projects/
MP_Lite/ and can be downloaded free
of charge. “I tell people straight out
that it’s an experimental product
under development,” says Turner.

“It’s been a good way of finding out
about bugs in the code.”

Turner admits that the work on
MP_Lite suits him well. “I like the
puzzle aspect of it,” he says. “I like
tuning codes and getting them to run
on a scalable computer, and trying to
squeeze more performance out of
what's there.” [

For more information:
David Turner, (515) 294-1307
deturner@iastate.edu

Research funded by:

DOE Office of Advanced Scientific

Computing Research,
Mathematical, Information and
Computational Sciences Division

23[[!|quiry2002



