The Node Monitoring Component of a Scalable Systems Software
Environment

Sam Miller and Brett Bode
Department of Electrical and
Computer Engineering
Iowa State University
Scalable Computing Laboratory
Ames Laboratory, U.S. DOE
Ames, lowa 50011
Email: {samm, brett}@scl.ameslab.gov

Abstract

We describe Fountain, an implementation of the
Scalable Systems Software mode monitor specification
targeted at aggregate node monitoring for clusters.
Fountain is designed from the ground up as a hier-
archical system with scalability in mind. It leverages
widely used technologies such as XML and HTTP to
present an interface to other components in the SSS en-
vironment. In this paper we describe the design choices
of Fountain and discuss some preliminary performance
measurements on medium sized clusters.

1 Introduction

The Scalable Systems Software (SSS) center [7] is a
multi-institutional initiative to design and build com-
ponent based cluster management software to more ef-
fectively utilize terascale computational resources. The
goal of the center is to develop open source compo-
nents that work effectively on small and large scale
systems. As computational resources grow beyond to-
day’s teraop class systems into future petaop and be-
yond systems, scalability problems must be solved to
utilize these resources to their full potential. Fault-
tolerance, reliability, manageability, and ease of use for
both system administrators and users is a key goal of
the SSS project. Presently, the SSS project has defined
interfaces and created reference implementations for a
variety of components. The interface for each compo-
nent is publicly documented since it is unlikely that
every component will fit the needs for every installa-
tion site.

In this paper we present the design of a node mon-
itoring component called Fountain. Section 2 presents
some background and motivation for designing this
component. Section 3 gives an overview of existing
node monitoring tools. Section 4 describes the inter-
face to a node monitor and what services Fountain pro-
vides. Section 5 discusses the design choices and im-
plementation of Fountain. Section 6 gives results for
the test environments. Section 7 proposes some future
work to add new features to Fountain. Lastly, section
8 concludes this paper.

2 Background and Motivation

System level monitoring is an important part of clus-
ter management. As computational resources scale into
the thousands of nodes per system domain, the failure
rate for individual components will increase. Detecting
these component failures before they happen requires
an accurate snapshot of the cluster’s status so the sys-
tem administrator and other system components can
act appropriately. Presently, node monitoring for a
wide number of clusters is extremely primitive. The
most often used method is the ping command, which
does little more than tell the administrator if a node is
physically connected and powered on. It still may be
unusable, or unreachable due to a number of problems.
In the event the ping command fails, the typical solu-
tion is to reboot the node, potentially destroying any
temporary logs or event traces that preceded the fail-
ure. This methodology is inefficient for even medium
sized clusters. As clusters continue to increase in size,
effective monitoring of system and node information
will be required.

Fountain has three distinct design goals in order to
be a reliable, accurate, and effective node monitor.
First, it should be fault tolerant in the sense that it
should handle both individual and multiple node fail-
ures. In this context a node failure is defined as a loss
of power, kernel panic, or a similar loss event. The sec-
ond design goal of Fountain is that it should have a low
memory footprint and processing requirements for each
node. Monitoring perturbation is an unavoidable side
affect of any performance monitoring system, however
Fountain strives to reduce this as much as possible.
The third and final design goal is Fountain should be
able to effectively scale to next generation computa-
tional resources containing thousands of nodes.

The motivation to design Fountain came from the
need to provide the cluster scheduler of the SSS envi-
ronment with an accurate snapshot of each node’s sta-
tus. The cluster scheduler requires this information so
user jobs can be scheduled and run accordingly. This is
why fault tolerance is the primary and most important
design goal of Fountain. In order to reliably provide the
scheduler with accurate information, Fountain needs to
be able to both recognize and recover from individual
and multiple node failures in an efficient, reliable, and
effective manor without adversely affecting the system.

3 Prior Work

Many monolithic resource management systems in-
clude basic monitoring capabilities. Products such as
the Portable Batch Scheduler, LoadLeveler, Platform
LSF, and the Sun Grid Engine all provide monitoring
interfaces for cluster administration. While these sys-
tems all provide adequate monitoring features, many
are not capable of interfacing with the existing SSS
components shown in Figure 1 without modifications.

Supermon is a tool for scalable and high speed clus-
ter monitoring. It is split into three separate com-
ponents, a kernel module for providing the monitored
data on each node, a server daemon on each node, and
a data aggregator to present a single cluster image to
clients. It relies on symbolic expressions for commu-
nication between components in order to reduce node
perturbation when parsing messages [6]. One drawback
to Supermon is that it does not provide memory usage
information or node state information. It also does not
interface with a cluster scheduler.

Ganglia is a scalable distributed monitoring sys-
tem targeted towards clusters, grids, and planetary-
scale systems [3]. It relies on a multicast-based lis-
ten/announce protocol to monitor cluster-wide state
information While this approach allows easy setup, it
imposes the requirement of having a functional local-

Scheduler

Node
Monitor

Service
Directory
Event
Manager
Interface to all

other components

Allocation
Management

Process
Manager

Queue
Manager

Figure 1. Components of the Scalable Sys-
tems Software Project

area I[P multicast network in place. Unlike Fountain,
Ganglia is not explicitly designed to interface with a
cluster scheduler. However, commercial resource man-
agement packages such as Moab[4], or the open source
variant Torque[9], can provide interfaces to the data
monitored by Ganglia. Ganglia also provides detailed
historic usage information by utilizing the RRDtool.

4 Node Monitor Interface

The primary user of the Fountain node monitoring
component is the cluster scheduler. There are other
users, mostly for administrative purposes, which will
not be discussed further in this paper. The interface
Fountain presents to its outside users is fairly straight-
forward. The system wide Service Directory compo-
nent handles registration and de-registration requests
for all components of the Scalable Systems Software en-
vironment. After a component registers itself with the
Service Directory, other components can query the Ser-
vice Directory and ask which port and what protocol
a particular component has registered. Upon initializ-
ing itself, Fountain registers a port (ex: 9100) and a
protocol (ex: SSSRMAP) with the Service Directory.

The Scalable Systems Software Resource Manage-
ment and Accounting (SSSRMAP) message format de-
fines a request-response syntax based on top of the
HTTP protocol [1]. It is suitable for a connection ori-
ented, XML based, application layer client-server pro-
tocol for interaction with other SSS components. Foun-
tain uses the SSSRMAP message format and wire pro-
tocol, together with the SSS Node Object specification
to create its interface to other components. Figure 1
shows some of the other components and their common

<Envelope><Body actor="samm">
<Request action="Query"><Data>
</Data><0bject>Node</0Object>

<Get name="NodeId"></Get>

<Get name="NodeState"></Get>

<Where name="NodeState" op="eq">down
</Where></Request></Body></Envelope>

<Envelope><Body actor="root">
<Response action="Query"><Count>
2</Count><Total>34</Total>

<Data name="NodelList" type="xml">
<Node><NodeId>m20</NodeId>
<NodeState>down</NodeState></Node>
<Node><NodeId>m34</NodeId>
<NodeState>down</NodeState></Node>
</Data><Status><Value>Success</Value>
<Code>000</Code><Message>

2 node(s) found</Message></Status>
</Response></Body></Envelope>

Figure 2. Example SSSRMAP node monitor
query and response

interactions with one another in the SSS environment.

Fountain is very extensible with respect to the data
it can return in response to a query. When any client
queries the Fountain server, they can supply an op-
tional Where element and indicate an operator such
as gt, 1t, eq, ne, le, ge, or like for regular expres-
sion matching. In this fashion the cluster scheduler can
query the Fountain server for all nodes matching the
particular parameters requested by a user for their par-
allel job. It is also useful for a system administrator to
query the Fountain server for all nodes with a state of
down.

A sample SSSRMAP node query request and re-
sponse message is shown in Figure 2. The query asks
Fountain to return a response with the nodes that have
a state of down. The response message indicates there
are 2 out of 34 nodes with a state of down.

5 Design of Fountain

Fountain consists of three separate components, the
Fountain server, the master Fountain daemon, and the
slave Fountain daemons. Each component is a separate
process that communicates with the other Fountain
components using XML messages over sockets. The
Fountain server is responsible for aggregating together
all of the current node statistical information and mak-

ing it available to other SSS components using the in-
terface described in the previous section. The master
Fountain daemon is responsible for maintaining an ac-
curate topology of slave Fountain daemons. The slave
Fountain daemons do the actual monitoring work, they
are responsible for monitoring their specific node in the
cluster and promptly reporting neighboring Fountain
daemon failures. The master and slave Fountain pro-
cesses are daemons in the sense that they are expected
to run forever with little or no user interaction.

A Fountain system starts life by executing the mas-
ter Fountain daemon and the Fountain server on the
head node of a cluster. The second step is to execute
a slave Fountain daemon on all the other nodes in the
cluster. This step does not need to be fast since it only
happens once. Typically the best method to accom-
plish this is to launch a slave Fountain daemon with an
initialization script during the node boot process. For
smaller clusters the slave daemons can be launched by
hand using ssh, telnet, or a similar method.

5.1 Slave Fountain Daemon

A slave Fountain daemon is very simple. It consists
of a process running on each node of a cluster with two
purposes. The first is to collect the static and dynamic
usage information for the node it is running on, and
the second is to report neighboring Fountain daemon
failures in a timely fashion. In the current implemen-
tation, Linux is the only supported architecture for the
slave Fountain daemons because the required monitor-
ing information can be found in the /proc file system.
The interface to gather the monitoring information is
abstract enough that it will be trivial for Fountain to
support other operating systems in the future. The in-
formation collected by each daemon is the amount of
configured memory and swap space, amount of avail-
able memory and swap space, CPU usage, CPU archi-
tecture, and node operating system.

When a slave Fountain daemon starts, it performs
some initialization work that opens a listening socket
for incoming connections. Then it attempts to connect
to the master Fountain daemon, after which it enters
what is essentially an infinite loop. Inside this infi-
nite loop, a system call to select waits for an incom-
ing connection on the listener socket or for incoming
data on an existing socket. If there are no incoming
connection requests, or data waiting to be read on ex-
isting sockets, the slave Fountain daemons essentially
do nothing. They only collect node information when
requested to. That is, the Fountain server pulls data
from the Fountain daemons rather than the daemons
pushing the data.

a . b Q
s \ E

’ \ H ’
’ . ’

\
\
\
\

’ / .
/ / \ :
/ : / \ H
/ \ : / \ R

@ slave Fountain daemon

--- pulse request —— pulse response

Figure 3. The three purposes of the pulse re-
quest and response messages.

A slave Fountain daemon has a persistent connec-
tion to its parent node and persistent connections to
any number of child nodes. The number of child con-
nections for each Fountain daemon depends on its lo-
cation in the Fountain tree topology, which will be ex-
plained in the next section. Slave Fountain daemons
respond to request messages received from their parent
node. An example request is a query message, which
instructs the daemon to gather its node statistical in-
formation. Slave Fountain daemons also expect to re-
ceive two types of messages from their child nodes, a
pulse request or a zero length message. If a zero length
message is received from either the parent connection
or any of the child connections, the slave Fountain dae-
mon assumes that neighboring node has failed and it
reports the failure to the master Fountain daemon.

Pulse messages serve three purposes, they are shown
in Figure 3. The first purpose, in Figure 3a, happens
when a parent daemon periodically sends its children
a pulse request. When a child receives this message, it
knows the parent is alive and well. The second pulse
message purpose is shown in Figure 3b, when a par-
ent daemon dies unexpectedly and the remote socket
is not closed. This could happen due to a kernel panic,
an unplugged network cable, or any number of other
reasons. In this case, the child will send a pulse re-
quest to its parent. If it does not receive a response,
the parent is assumed to be lost and handled as previ-
ously mentioned. The third purpose is shown in Figure
3c, when the parent daemon has not sent its children a
message during a predefined time interval but it’s still
alive. In this case, the children will send a pulse re-
quest to their parent and it will respond with a pulse
response indicating it’s still alive.

5.2 Master Fountain Daemon
A Fountain system consists of a single master Foun-

tain daemon, typically running on the head node of a
cluster. The master daemon is similar to the slave dae-

Fountain server
Fountain master daemon
Fountain slave daemon

@00

Persistent socket connections

Figure 4. Example Fountain tree topology us-
ing 3 children per node

mons, except it has the added requirement of maintain-
ing an accurate topology of slave Fountain daemons in
order to facilitate fast node queries. To achieve maxi-
mum scalability, we chose to use an n-ary tree topology
to manage the slave Fountain daemons instead of other
topologies such as a ring or a star [2]. Figure 4 shows
an example ternary Fountain tree topology. Section 6
will present some initial conclusions about the optimal
number of children for each node based on node query
performance results.

When the master Fountain daemon starts, it opens
a listening socket and waits for incoming connections.
When a slave Fountain daemon connects to the master
daemon, they initiate the tree establishment algorithm.
This algorithm uses a three way handshake to intro-
duce new slave Fountain nodes daemons the tree topol-
ogy. After receiving the initial connection request, the
master daemon looks up the next available parent dae-
mon in its tree topology data structure. An available
parent node is defined as the first node in the topology
with less than the maximum number of children. The
master daemon then sends a join response containing
the hostname and listening port of the parent daemon
this slave daemon should connect to.

After receiving the join response, the slave Foun-
tain daemon attempts to join the parent daemon spec-
ified by the master daemon. When this connection is
successful, the slave daemon responds to both its new
parent daemon and the master daemon with a join-ack
response and closes its connection to the master Foun-
tain daemon since its no longer necessary. The master
Fountain daemon then appends the newly joined slave
daemon to its tree topology data structure and incre-
ments the number of children for its parent daemon

joinRequest

joinAccept

slave
master — Fountain
Fountain joinRequest daemon
daemon already in
the tree

Time

joinAccept

joinAck

joinAck

Figure 5. Fountain tree establishment mes-
sage sequence

by one. The sequence of messages exchanged between
the master Fountain daemon, a slave Fountain daemon
already in the tree topology, and a slave Fountain dae-
mon that is attempting to join the tree topology is
shown in Figure 5.

The Fountain tree topology is designed as a complete
n-ary topology. This means each entry has at most n
children, and all the levels of the tree are full except
for the bottom level, which is filled from left to right.
Equations 1 and 2 can be used to locate the parent of
node b, or child a of node b. The result of each equation
is an index into the tree topology data structure. Note
that a can have values between 0 and n-1 inclusive.

parent = [(b—1)/n] (1)

child=n+b+a (2)

In addition to the tree establishment algorithm,
the master Fountain daemon uses two additional algo-
rithms to maintain the the topology of slave Fountain
daemons. The tree recovery and rebuilding algorithms
are used to recover the tree topology in the event of
node failures. In this context, a node failure is defined
as an event that causes the slave Fountain daemon to
not respond to request messages. How the node fail-
ure happens is not necessarily important, just that the
system of Fountain daemons can handle such an event.

The tree recovery algorithm used by Fountain is
based on the work in [2]. When a slave Fountain dae-
mon in the tree topology fails, both its parent dae-
mon and child daemons notice the failure when their
socket connection to that daemon is closed unexpect-
edly. They will then attempt to report this daemon
failure to the master Fountain daemon. Upon receiving
a lost daemon request, the master daemon will tran-
sition the tree state from idle to recovery. Once in
the recovery state, the master daemon rejects all other
requests except for additional lost daemon requests.
That is, when the Fountain server sends a node query

to the master daemon while the tree topology is in re-
covery state, it will receive an error response indicating
the tree topology is recovering from a failure. Requests
to join the tree topology are also rejected by the master
Fountain daemon when the tree topology is recovering.
After initially entering the tree topology recovery state,
the master daemon marks the failed daemon as lost and
waits for all of the lost daemon’s neighbors to report
the failure. After all of the failed daemon’s neighbors
have contacted the master Fountain daemon to report
the failure, the master daemon selects a replacement
daemon from the tree topology. To minimize the num-
ber of slave Fountain daemons affected by this recovery
algorithm, the replacement daemon is always the last
Fountain daemon to join the tree topology. After the
replacement daemon successfully joins the failed dae-
mon’s parent, the master Fountain daemon informs the
failed daemon’s children to join the replacement dae-
mon. The master daemon then sets the tree state back
to idle so query requests can be processed.

If multiple nodes fail at or near the same time, the
master Fountain daemon will accept the first lost node
request and reject all subsequent requests by inform-
ing the daemon that reported the failure to try again
later. Clearly this could cause a race condition if a sin-
gle slave daemon has both its parent and one or more
of its children fail concurrently. This race condition is
mitigated by using a timer when the master Fountain
daemon initially transitions to the tree topology recov-
ery state. If the timer expires before all of the neigh-
boring Fountain daemons have reported the failure, the
master daemon transitions from the tree topology re-
covery state to the tree topology rebuild state. Once
in the rebuild state, the master daemon closes all of its
child connection sockets and responds to all lost node
requests by telling the slave Fountain daemons report-
ing node failures to rejoin the master Fountain daemon.
After receiving a rejoin response when reporting a lost
node request, a slave Fountain daemon will close all of
its child connections and attempt to rejoin the master
Fountain daemon. This process happens recursively
until the entire tree topology is rebuilt.

The tree recovery algorithm is shown in Figure 6
in the event of a single node failure where each node
in the tree has a maximum of three child nodes. The
resulting tree topology after the recovery would have
node 4 replaced by node 16. Nodes 13, 14, and 15
would be children of node 16.

Up until this point, we have only discussed failures
of the slave Fountain daemons. It is possible for the
master Fountain daemon to fail as well. This will be
detected by the master daemon’s direct children. Since
each slave daemon has no knowledge if its parent is the

master Fountain daemon ______ » lost parent request

slave Fountain daemon ~ ~""""""" #» lost child request
—— -—>» new parent request

\.r.

permanent connection

Figure 6. Fountain tree topology recovering
from a single node failure

master daemon or another slave daemon, they attempt
to connect to the master daemon and report its own
failure. Obviously this will not succeed since the mas-
ter daemon has failed and cannot accept connections.
When the master daemon eventually returns, its for-
mer children will connect successfully and attempt to
report the failure. The master daemon responds to
this request by informing the slave daemon to rejoin
the tree topology. This process is essentially the same
as the tree rebuilding algorithm. After being told to
rejoin the tree, the slave daemons that reported the
master daemon failure will rejoin the master daemon
and close their child connections. Their children, in
turn will attempt to report their failure, which will
cause the master daemon to inform them to rejoin the
tree.

5.3 Fountain Server

The Fountain server is the most important compo-
nent of the Fountain node monitoring system since it
presents a single system view of the cluster to clients.
After starting the Fountain server, it opens a listen-
ing socket for client requests and enters its main loop.
Inside the main loop it attempts to connect to the mas-
ter Fountain daemon. This connection is persistent, so
it only happens once. After successfully connecting,
it sends the master Fountain daemon a query request
message at a user configurable interval. After sending
the query request message, the Fountain server waits
for the query response from the master Fountain dae-
mon. This query response will contain the node sta-
tus information from each node in the Fountain tree
topology. The Fountain server maintains a node mon-

Fountain server
© Fountain master daemon
@ Fountain slave daemon

————— > query request

———————— > query response

Figure 7. Query request & response

itor data structure to keep track of all the information
for each node in the cluster. This data structure is
updated after receiving and parsing a node query re-
sponse. The node query request and response message
sequence between the Fountain server, and all of the
Fountain daemons is shown in Figure 7. Also inside its
main loop, the Fountain server accepts incoming client
connections and responds to their requests. These con-
nections are transient, so they are closed after sending
the response message.

Since the primary client of the Fountain server is
the cluster scheduler, accurate node state information
is imperative for the scheduler to operate effectively. To
fulfill this requirement, Fountain will change a node’s
state to down if it does not respond to a query request.
Only after the node comes back online and the Foun-
tain daemon for that node responds to a query request,
will the node’s state be changed back to Up.

When the master Fountain daemon receives the
query request from the Fountain server it immediately
forwards the request to each of its children and then
waits to receive a response from them. This process
happens recursively for each slave Fountain daemon as
well. The slave Fountain daemons that are the leaf
nodes of the tree topology have no children, and will
immediately respond to the query request with their
node status information. When their parent daemons
receive a query response from each of their child dae-
mons, they append their node status information to-
gether with each child response and send the response
to their parent daemon. When the master Fountain
daemon receives query response messages from each of
its children, it appends its node status information and
sends the response to the Fountain server.

A race condition exists if a node in the cluster fails

before the query request message has reached the slave
Fountain daemon running on that node. This hap-
pens due to the use of a blocking read after the master
Fountain daemon sends the query request message to
its children. When a slave Fountain daemon in the
tree topology fails, its neighboring daemons will at-
tempt to report this failure to the master Fountain
daemon. Since the master daemon is a single threaded
application, it cannot respond to the node failure re-
quest and wait for the node query response at the same
time. This race condition is handled by the addition
of a timeout when the master daemon is waiting for
query response messages from each of its children. If
the timeout period has elapsed before receiving a query
response from one of its children, the master Fountain
daemon will abort the node query request and send
a response with a failure error code to the Fountain
server. Then it will handle the node failure request
and recovery the tree topology using the tree recovery
algorithm.

6 Results

In this section we present test results from two
medium sized Linux clusters. The first test environ-
ment is 4pack, a cluster of 34 PowerPC G4 Macintosh
computers running Debian Linux and connected by a
high speed Myrinet network for intra-node communi-
cation and fast ethernet for management. The second
test environment is Scink, a 64 node dual-processor
AMD Athlon MP2200 cluster running Debian Linux
and connected with a 2D SCI network and fast ether-
net.

6.1 Query Performance

The primary design goal of Fountain is to maintain
an accurate tree topology in the presence of node fail-
ures. Performing fast and efficient node queries is a
secondary goal. To do this the Fountain daemons are
arranged in a n-ary tree topology as described previ-
ously. The results from performing node queries on
a variety of Fountain configurations are shown in Ta-
bles 1 and 2. Figures 8 and 9 show a graph of these
two tables. To achieve larger configurations than 34
Fountain daemons on 4pack or 64 Fountain daemons
on Scink, multiple slave Fountain daemons were run
on a each node in the cluster. The time represented
for each query is measured as the time it takes the
Fountain server to send the master Fountain node a
query message, receive the query response, and process
the response message. They are measured in millisec-
onds and represent an average of three separate node

Table 1. Elapsed node query time on 4pack
(milliseconds)

’ System Size H Binary ‘ Ternary ‘ 4-ary ‘ 5-ary ‘

34 140.07 97.32 95.8 86.01
67 189.88 | 180.04 | 154.85 | 157.09
100 289.28 | 213.05 | 225.32 | 212.24
133 370.07 | 308.05 | 304.31 | 225.34
199 559.38 | 478.68 | 407.06 | 417.11
265 675.85 | 564.34 | 488.31 | 552.37

Table 2. Elapsed node query time on Scink
(milliseconds)

’ System Size H Binary ‘ Ternary‘ 4-ary ‘ 5-ary ‘

65 106.92 125.31 93.86 | 98.10

129 195.65 207.85 | 151.32 | 147.13

257 443.78 462.12 | 331.67 | 267.52

512 721.96 682.11 | 543.56 | 550.49

769 985.29 1067.4 | 901.45 | 607.83

1025 1112.15 | 1034.68 | 972.51 | 898.02
queries.

On both 4pack and Scink the results show nearly
linear scaling. More-so on 4pack than Scink, which is
probably because Scink is used as a production clus-
ter for computational chemists so CPU usage was not
as low as 4pack when these test results were collected.
The query time results are favorable in the sense they
show Fountain is capable of scaling to larger system
configurations without adversely affecting the time it
takes to query every node in the cluster. These results
show that Fountain is capable of querying and process-
ing the results for a cluster with up to 1,025 nodes in
less than one second. If faster monitoring speed is de-
sirable for a particular installation site, Fountain can
be extended to act as a wrapper around a more spe-
cialized monitoring component like Supermon [6] and
present its data using the SSS interface.

700

600

500

400 -

300

Query time (milliseconds)

200

100 o4 binary tree —+—
ternary tree ---x---
4-ary tree ---%--
5-ary tree @

. . . .
0 50 100 150 200 250 300
Total system size (number of nodes)

Figure 8. Elapsed time to perform a node
query on 4pack

6.2 Recovery Performance

The 4-ary and 5-ary tree topologies perform node
queries faster than the binary and ternary trees. How-
ever, with these configurations the time for the tree
to recover from a single node failure increases. Table
3 shows the average time to recover the tree topology
from a single deterministic node failure. The numbers
shown represent the time in milliseconds that elapse
from when a neighboring node first reports the failure
until a replacement node has been contacted and suc-
cessfully replaced the failed node. For tree topologies
with a larger degree, the time to recover from a node
failure is longer because each node has more neighbors
that have to report the failure. Table 4 shows the aver-
age time to recover the tree topology from multiple con-
current node failures on 4pack. In this case, the time
shown is the total time that elapses for the tree topol-
ogy to recover from each failure. The time to recover
from multiple concurrent node failures is more than the
time to recover from a single node failure, multiplied
by the number of failed nodes. Since the master Foun-
tain daemon can only recover the tree topology from a
single failure at once, it rejects all lost node requests
for a different lost node if it is already handling a node
failure. Only after the master daemon has recovered
the tree topology from the first failed node that was
reported first, will it respond to requests for another
lost node.

These recovery times show that Fountain is capable
of efficiently reconstructing its tree topology from sin-
gle or multiple node failures by affecting the minimum
number of nodes possible. The recovery results are fa-

1200

1000

800

600

Query time (milliseconds)

400 -

200
binary tree —+—
ternary tree ---x---
4-ary tree --¥--
5-ary tree @
. ; ;

0 100 200 300 400 500 600 700 800 900 1000 1100

Total system size (number of nodes)

Figure 9. Elapsed time to perform a node
query on Scink

Table 3. Elapsed tree topology recovery time
from a single deterministic node failure (mil-
liseconds)

’ System H Binary ‘ Ternary ‘ 4-ary ‘ 5-ary ‘
4pack 95.23 167.66 | 195.74 | 230.76
scink 156.73 | 195.43 | 247.28 | 276.69

vorable since the time to recover from both single and
multiple node failures only depends on the degree of
the tree topology and not the total number of fountain
daemons.

6.3 Rebuild Performance

The tree rebuilding algorithm presented in section
5.2 is used as a last effort to reconstruct the tree topol-
ogy if the master Fountain daemon determines it’s not
possible to recover the tree topology using the tree re-
covery algorithm. The numbers shown in Table 5 rep-
resent a worst case scenario for the tree rebuilding al-
gorithm. The elapsed time is obtained by forcing a
tree rebuild without losing any nodes in the cluster.
Normally, the tree rebuilding algorithm would be trig-
gered by multiple nodes failing at the same time. In
that case, timing the rebuilding algorithm would be dif-
ficult because it’s unknown how many nodes failed and
when they will be able to rejoin the tree topology. The
tree rebuilding algorithm is faster on topology configu-
rations with a higher degree, which is expected due to

Table 4. Elapsed tree topology recovery time
from multiple node failures on 4pack (sec-
onds)

’ # Failed H Binary ‘ Ternary ‘ 4-ary ‘ 5-ary ‘

2 0.22 0.35 0.49 | 0.49
3 1.24 1.36 1.05 | 0.72
4 1.36 2.3 2.40 | 2.638
5 0.748 1.85 2.66 | 2.33

Table 5. Elapsed tree topology rebuild time
on 4pack (seconds)

System Size H Binary ‘ Ternary ‘ 4-ary ‘ 5-ary ‘

33 5.54 4.46 3.93 3.77

65 6.70 5.85 4.847 | 4.98

97 7.87 6.46 6.56 6.01

161 9.94 9.02 8.72 8.61
its design.

6.4 Node Overhead

Table 6 and Figure 10 summarize the node overhead
for individual nodes on 4pack. The monitoring band-
width numbers were collected by running tcpstat [8]
three times, for five minutes and averaging the results.
CPU usage is not shown in the table because it was less
than 0.1% in all cases but the master daemon, where it
was 0.15%. Each Fountain daemon achieves low CPU
usage because it spends most of its time waiting for
incoming messages in the select system call.

The bandwidth numbers shown in Table 6 represent
both the send and receive bandwidth for each Foun-
tain daemon, depending on the query interval used by
the Fountain server, and the daemon’s particular level
in the tree topology. The level is the number of hops
away from the master Fountain daemon. The mas-
ter daemon uses the most bandwidth since it sends a
query response message containing all of the Fountain
daemon’s information to the Fountain server. As the
level increases, the bandwidth usage per node decreases
since that node will have at most, half as many chil-
dren and grandchildren as its parent node. Increasing

Table 6. Node bandwidth (KB/sec) usage on
4pack for a binary tree topology

’ query interval H level ‘ total nodes ‘ bandwidth

30 0 33 1.3
30 1 33 0.78
30 2 33 0.47
30 0 65 2.42
30 1 65 1.40
30 2 65 0.49
15 0 33 2.60
15 1 33 1.41
15 2 33 0.87
15 0 65 4.8
15 1 65 2.6
15 2 65 1.5

the query interval from 30 seconds to 15 seconds in-
creases the bandwidth by about a factor of 2. This is
expected because the query request and response mes-
sages make up nearly all of the bandwidth used by a
Fountain daemon. The only other messages sent be-
tween Fountain daemons are the pulse request and
response messages, which are very small and sent less
frequently than query messages.

The numbers shown represent the bandwidth when
the tree topology is in a binary tree configuration. As
expected, increasing the tree topology degree causes
the bandwidth per node to decrease more rapidly as
the level number increases. However, the bandwidth
used by the master Fountain daemon will always be the
same as long as the total number of Fountain daemons
does not change.

7 Future Work

Due to its fault tolerant design requirement, addi-
tional work remains to formally verify the tree estab-
lishment, tree recovery, and tree rebuilding algorithms
used to maintain the tree topology for the slave Foun-
tain daemons. It may also be beneficial to implement
a more advanced algorithm for establishing the tree
topology where the number of children each Fountain
daemon has depends on its depth in the topology in-
stead of using a fixed number of children per daemon.

T T T
h 30s query, 33 nodes —+—
30s query, 65 nodes ~--x---
155 query, 33 nodes -+ ¥:-
155 query, 65 nodes &

Node Bandwidth (KB/sec)

Level in Tree Topology

Figure 10. Node bandwidth usage on 4pack
for a binary tree topology

Extending the Fountain server to monitor other data
than just node specific information is also a future re-
search topic. We have explored this topic by imple-
menting an Infiniband network monitoring module and
have considered extending this idea to monitor other
high performance networks. This information is gath-
ered by the Fountain server separately from the node
based information from the Fountain node daemons.
This idea could also be implemented to monitor spe-
cialized parallel architectures such as the Cray XT3 or
IBM BlueGene. Finally, a server specific data source
could act as a wrapper around other, more specialized
monitoring tools, such as Ganglia, Supermon, or NW-
Perf [5], and allow Fountain to present their data to
other SSS components using the existing interface to
Fountain.

To provide a user friendly interface to Fountain,
both a web based and traditional GUI application are
in development. These projects will allow a system
administrator to view the overall cluster status as a
snapshot. Historical system usage network topography
visualization are being considered for this project.

8 Conclusion

This paper has described the design of a node mon-
itoring component that implements the Scalable Sys-
tems Software node monitor specification. The results
show it scales favorably to larger systems sizes when
performing node queries and recovering from node fail-
ures. Future work exists to add additional features such
as a web interface and network topology performance

mapping.

Acknowledgment

This work was performed under the auspices of the
U.S. Department of Energy under contract W-7405-
Eng-82 at Ames Laboratory operated by the Iowa State
University of Science and Technology. Funding was
provided by the Mathematical, Information and Com-
putational Science division of the Office of Advanced
Scientific Computing research.

References

[1] B. Bode and S. Jackson. Scalable systems software
resource management and accounting documentation.
http://sss.scl.ameslab.gov/docs.shtml, 2005. [On-
line; accessed April 5, 2006].

[2] M. Huang and B. Bode. A performance comparison
of tree and ring topologies in distributed systems. In
Proc. IEEE International Parallel and Distributed Pro-
cessing Symposium, pages 258-266, Denver, Colorado,
Apr. 2005.

[3] M. L. Massie. The ganglia distributed monitoring sys-
tem: design, implementation, and experience. Parallel
Computing, 30:817-840, July 2004.

[4] Moab cluster suite. http://www.clusterresources.
com/pages/products/moab-cluster-suite.php, 2006.
[Online; accessed April 12, 2006].

[5] R.S.R. Mooney, K.P. Schmidt. Nwperf: a system wide
performance monitoring tool for large linux clusters. In
Proc. IEEE International Conference on Cluster Com-
puting, pages 379-389, Denver, Colorado, Sept. 2004.

[6] M. J. Sottile and R. G. Minnich. Supermon: A high-
speed cluster monitoring system. In Proc. IEEE In-
ternational Conference on Cluster Computing), pages
39-46, Chicago, Illinois, Sept. 2002.

[7] The scalable systems software website. http://www.
scidac.org/scalablesystems, 2005. [Online; accessed
November 8, 2005].

[8] tcpstat. http://wuw.frenchfries.net/paul/
tcpstat/, 2006. [Online; accessed April 10, 2006].

[9] Torque resource manager. http://wuw.
clusterresources.com/pages/products/
torque-resource-manager.php, 2006.

accessed April 12, 2006].

[Online;

