
HPC-GECO/CompFrame Workshop 2006

Coupling GAMESS via Standardized Interfaces
Fang Peng, Meng-Shiou Wu, Masha Sosonkina, Ricky A. Kendall, Michael W. Schmidt, Mark S.

Gordon

Abstract—GAMESS, a software package for electronic

structure calculations, enjoys great popularity among
high-performance application scientists. It contains a variety of
parallel methods and provides a sophisticated distributed data
interface. This paper presents experiences in designing
interoperability features for parallel GAMESS. In particular, the
newly developed Common Component Architecture (CCA)
components for GAMESS are described. They adhere to the
existing "general" CCA chemistry interfaces, which enable
dynamic coupling of GAMESS with other quantum chemistry
packages, such as NWChem. To justify the versatility of the
design, the Tuning and Analysis Utility (TAU) components have
been coupled with GAMESS-CCA, so that the performance of
GAMESS may be analyzed for a wide range of system parameters.
While both TAU and NWChem have been integrated with
GAMESS under the same component architecture, the
integration procedures took different paths. The paper explains
these differences, proposes possible integration solutions, and
emphasizes general lessons learned.

Index Terms— Common Component Architecture, GAMESS,
NWChem, TAU, DDI

I. INTRODUCTION
H
Sy

E General Atomic and Molecular Electronic Structure
stem (GAMESS) is an ab initio quantum chemistry

program, which has been under development for more than
twenty years [1]. GAMESS is able to solve a wide range of
quantum chemistry computations including Hartree-Fock (HF)
wavefunctions (RHF, ROHF, UHF), GVB, and MCSCF using

the self-consistent field method [1]. It is installed on many high
performance computing systems, including those at most DOE,
DOD, and NSF supercomputer centers, many academic
institutions, and widely in the private sector. It is also part of
the standard benchmark suites employed, for example, by
NERSC, by the High Performance Computer Modernization
Program, and by several computer companies (e.g., IBM). The
number of GAMESS users is estimated to be on the order of
100,000.

Manuscript received April 10, 2006. This work was performed under

auspices of the U. S. Department of Energy under contract W-7405-Eng-82 at
Ames Laboratory operated by the Iowa State University of Science and
Technology. Funding was provided by the Mathematical, Information and
Computational Science division of the Office of Advanced Scientific
Computing Research. This research used resources of the Scalable Computing
Laboratory at Ames Laboratory, which is supported by the Office of Science of
the U.S. Department of Energy under Contract No. DE-AC03-76SF00098.

Fang Peng is with the Scalable Computing Laboratory, Ames Laboratory,
US DOE. (phone: 515-441-294-9469; fax: 515-294-4491;
e-mail:fangp@scl.ameslab.gov)

Meng-Shiou Wu is with the Scalable Computing Laboratory, Ames
Laboratory, US DOE. (e-mail: mswu@scl.ameslab.gov)

Masha Sosonkina is with the Scalable Computing Laboratory, Ames
Laboratory, US DOE. (e-mail: masha@scl.ameslab.gov)

Ricky A. Kendall is with National Center for Computational Sciences, Oak
Ridge National Laboratory, US DOE. (e-mail: kendallra@ornl.gov)

Michael W. Schmidt is with the Scalable Computing Laboratory, Ames
Laboratory, US DOE. (e-mail: mike@si.fi.ameslab.gov)

Mark S. Gordon is with the Scalable Computing Laboratory, Ames
Laboratory, US DOE. (e-mail: mark@si.fi.ameslab.gov)

Most of the source code of GAMESS is designed with
FORTRAN 77 since it was the most popular programming
language for scientific computing at the time the project started.
While portability can be achieved through this design (every
modern cluster has a FORTRAN 77 compiler), incorporating
an external module or interacting with other scientific packages
can be very difficult since scientific packages developed in
recent years seldom use FORTRAN 77 exclusively.

During the last few years much research effort has been
aimed at developing architecture to provide interoperability for
high performance scientific software, and the Common
Component Architecture (CCA) [2] is constructed for this
purpose. CCA provides a framework for components from
different packages to be dynamically loaded to solve a
computational problem, without knowing which programming
language was used to design a component [3]. This provides us
the opportunity to allow GAMESS and other scientific
packages to interoperate seamlessly with minimum
modification to the GAMESS source code. Most CCA
frameworks use Babel [4], the language interoperability tool,
for solving the interoperability of components that are
implemented in different programming languages such as
Fortran, C, C++, Python, and Java. Without such a component
model, data exchange between two scientific packages can only
be accomplished through a large amount of file recoding.
Although there exist many other frameworks that support
component-based applications, such as CORBA [5], COM [6],
and JavaBeans [7], they are not designed for parallel computing
and are hardly used to create components for high performance
scientific programs. The Common Component Architecture
was designed for the component-based application parallel
High Performance Computing (HPC).

In the Common Component Architecture, the components
are basic units of software that are composed together to
provide a run-time component environment [2]. Instances of
components are created and managed within a framework,
which provides the basic services for components to operate
and communicate with each other [2]. Ports are the fully

T

HPC-GECO/CompFrame Workshop 2006

abstract interfaces, through which components interact with
each other and with the encapsulating framework [2]. A
component must declare its Provides port to provide its own
functions or services for other components to use, and also
registers its Uses ports to connect references to Provides ports
that are provided by other components or by the containing
framework [2]. The communications between different
components or between components and frameworks are
enabled by connecting matched Provides-Uses port pairs
through the framework.

CCA supports SPMD (Single Program Multiple Data),
MPMD (Multiple Program Multiple Data) and distributed
programming models. In this paper, we only discuss CCA in
the SPMD programming model since the other two
programming models are not used by the applications in our
research [8]. When a CCA framework, such as Ccaffeine [2], is
running in a parallel environment, each process has its own
instance of a CCA framework, and an identical set of
component instances and connections are loaded into each
framework [8]. The set of similar component instances that are
distributed across parallel processes can communicate with
each other by using any available communication system, (i.e.
MPI [9], PVM [10], Global Arrays [11], or shared memory),
while each framework instance that contains the identical set of
component instances and connections manages the interactions
among component instances within its own process [8].
Different sets of component instances are allowed to use
different communication systems simultaneously under the
same framework [8]; this is useful for the integration of legacy
codes under CCA frameworks since legacy software usually
has its own communication mechanisms.

In this research, we implemented a GAMESS CCA interface
in two different parallel models: GAMESS/DDI and
GAMESS/DDI/MPI models. GAMESS uses the Data
Distributed Interface (DDI) [12] as its parallel communication
mechanism, which mainly relies on TCP/IP sockets for
communication. Integrating the GAMESS/DDI system with
CCA and constructing a new parallel model for GAMESS
under the component architecture is our first research
contribution. Besides DDI, the Message Passing Interface (MPI)
can also be used for GAMESS communications and a different
mechanism has been developed for integrating GAMESS with
MPI. In this mechanism DDI depends on MPI, instead of
TCP/IP sockets, as the communication method. Since MPI is a
widely used message passing interface, the GAMESS CCA
components in this model are easily compatible with other
components within CCA frameworks. Our other contribution is
to develop a GAMESS/DDI/MPI model for GAMESS under
the component architecture. To test the compatibility of the
GAMESS CCA components, we integrated GAMESS with
other two packages, TAU [13], a package for measuring
performance, and NWChem [14], another large quantum
chemistry package. The paper is organized as follows. Section
II explains our design choices for creating the GAMESS CCA
components and introduces the Chemistry Component Toolkit,
the testbed for the GAMESS CCA components. In Section III,

initial experiments of coupling the GAMESS component are
presented.

II. GAMESS CCA COMPONENTS

A. The Structure of GAMESS Computations
There are three fundamental computations for quantum

chemistry calculations: energy, gradient, and Hessian [13]. To
run a calculation in GAMESS, e.g. a Hessian calculation, a set
of input options are needed, such as the type of wave function,
the point group symmetry of the molecule, nuclear coordinates,
and the atomic basis sets. After GAMESS is initialized, it reads
input options, decides the run type (computation), goes to the
driver program for the specified types of calculations, and
finally outputs the results.

GAMESS can be used on a wide range of parallel platforms.
To achieve high performance as well as exploit the advances in
HPC hardware and software, the communication mechanism of
GAMESS has been constantly improved and the message
passing library has been moved from the original TCGMSG
[16] to the current Distributed Data Interface (DDI) [12]. DDI
is a lightweight communication library that is based on TCP/IP
for portability. This design makes it possible for GAMESS to
be a self-sustained software suite, not relying on other
communication packages. Thus GAMESS may run on any
cluster regardless of the presence of an MPI implementation.
DDI provides a large distributed array to all nodes by
combining memory in individual compute nodes [4]. The
distributed array is mainly used in computations that need large
data structures, which are very common in many chemistry
computations.

In the DDI communication model, two processes are
normally assigned to a CPU, with one process performing the
computational tasks, while the other exists solely to store and
serve requests for the data associated with the distributed array
[12]. There are some cases, in which a data server is not
required, such as when using DDI over one-sided message
Fig. 1. When DDI is used on an SMP cluster, all DDI processes within a node
can access the distributed array in the node. The communications between data
servers among different nodes depend on the communication mechanism
configured with DDI (i.e., TCP/IP sockets, or MPI) [12].

HPC-GECO/CompFrame Workshop 2006

libraries1. In this paper, we only consider the cases when data
servers are needed. On an SMP machine or cluster (Figure 1),
all the DDI processes (both compute and data server processes)
within a node have direct access to all distributed array
segments in the shared memory of that node. Thus, each
compute process and data server can use system shared
memory operations, such as copy or paste, locally to access the
portion of a distributed array in its local shared memory without
using any parallel communication mechanisms. Depending on
the platform, communications between compute processes and
data servers among different nodes occur either via TCP/IP
sockets connections or MPI [12]. When DDI uses TCP/IP
sockets for communication, the DDI kickoff program is used
for starting the required number of processes on every
requested machine in the cluster that will run the job. If MPI is
used as the communication mechanism, then mpirun (or
mpiexec) is used to start GAMESS processes.

B. Chemistry Component Toolkit
Most quantum chemistry packages perform fundamental

chemistry calculations. Although existing chemistry packages
may have a lot of overlapping functionalities, some of them
may be more efficient in certain calculations while others may
provide special functionality. The CCA provides an
environment for different quantum chemistry packages to
communicate with each other, and opens the possibility to
utilize the best of each package. The Chemistry Component
Toolkit (cca-chem) [17] already integrates several quantum
chemistry packages, optimization solver packages, and parallel
data management packages to perform geometry optimizations.
The interface for chemistry components is a mixture of
components and non-component classes that are instantiated
and shared by components [18]. In Kenny et al.’s paper [18],
the usability issues of cca-chem are also discussed.

The generic interfaces in the chemistry components for the
quantum chemistry calculations include Model, ModelFactory,
Molecule, and MoleculeFactory, where the general
implementation of Molecule and ModelFactory interface are
available for all the component-based applications. The Model
interface declares the primary functions in quantum chemistry
computations, such as evaluation of molecule energies,
gradient and Cartesian Hessians. The ModelFactory interface
declares methods to provide model options and initializes the
model class. Similarly, the Molecule interface declares
functions for gathering information of a molecule, such as
Cartesian coordinates and atomic number. The
MoleculeFactory interface declares functions to instantiate
molecule classes [18].

Figure 2 shows an application example of the chemistry
components under the CCA framework. The molecule factory
component, model factory component and a driver component
are instantiated under a single CCA framework. The model
factory can get the reference of the molecule class through the
Provides port of the molecule factory and invoke the method of

the molecule class. Similarly, the driver component can get the
reference of the model class that instantiated and initialized by
the model factory, and then invokes the methods of the model
class, such as get_energy, get_gradient, and get_hessian. The
driver component will also output calculation results from the
model factory.

1 DDI relies on LAPI or SHMEM libraries rather than TCP/IP on some

high-end parallel systems

The quantum chemistry packages MPQC [19] and NWChem
have already built their component-based applications by
integrating to the Chemistry Component Toolkits. To provide
interoperability between GAMESS and NWChem or MPQC,
we decided to develop the analogous GAMESS CCA
components based on the same generic chemistry
interfaces/implementations of the chemistry components.

The integration of GAMESS into the chemistry optimization
architecture consists mostly of the implementation of Model
and ModelFactory interfaces and the integration of GAMESS
and DDI with the CCA framework. The GAMESS CCA
components are developed in C++, thus a Fortran 77/C wrapper
for GAMESS is required for passing parameters and returning
results between the component and GAMESS program. Since
CCA is a light-weight framework, we can expect minimum
performance impact on GAMESS. The implementation of the
chemistry interfaces is quite straightforward, since it mostly
follows the way of NWChem and MPQC CCA components.
The GAMESS CCA components differ from the existing
chemistry components in the requirement of the point
symmetry group input from users. GAMESS depends on user
input for determining the point symmetry group for efficient
calculations, while CCA chemistry components assume the
quantum chemistry package itself can detect the symmetry
group.

C. GAMESS/DDI Model under CCA Framework
Simply implementing Model and ModelFactory interfaces

for the GAMESS CCA components is not enough for

Fig. 2. Port A is a Provides port that is implemented by the molecule factory,
through which the reference of the molecule class is passed to other
components. Port C is a Provides port that implemented by the model factory,
through which the reference of the model class is passed. Port B and port D are
Uses ports that are registered by the model factory component and the driver
component for using the service provided by other components.

HPC-GECO/CompFrame Workshop 2006

GAMESS to run under the CCA framework, since GAMESS
relies on DDI to start the computation, either sequential or
parallel. Figure 3 shows the sequence of how the DDI kickoff
program starts GAMESS or other programs.

First, the DDI kickoff program needs the program name and
the host list as command-line arguments; the host list is a list of
host machine name and the number of processors in each node.
The master DDI kickoff process analyzes the host list to catch
the information on how many compute processes and data
servers reside on each host machine. Second, a copy of the DDI
kickoff program, along with information about host machines
is spawned on each remote host in binomial order. As soon as a
copy of the DDI kickoff program is launched on a host node, it
creates the requested number of compute and data server
processes on that host machine. Finally, a copy of the
GAMESS program, with the host machine list, socket ports,
host machine and process identities as the command-line
arguments, starts on each computer and data server process.
The TCP/IP socket connections between a DDI kickoff process
and a compute or data server process on the same host machine
is created after the program starts the DDI initialization
procedures. The DDI kickoff process on each host machine will
wait for each compute and data server process to check in by
listening to TCP/IP socket connections. As soon as all compute
and data server processes are checked in, the communication is
established for all compute and data server processes.

Since TCP/IP is the major communication mechanism used
by DDI for the communications between compute processes
and data servers, we first need to construct the GAMESS CCA
components under the GAMESS/DDI model. As long as the
GAMESS CCA components work under the GAMESS/DDI

model, it should also work when other communication libraries
are used instead of DDI. Eventually, we expect to develop a
model that applies to the SPMP or MPMD model of the CCA
framework and also maintains the performance of GAMESS.

The DDI kickoff program is used to start the requested
number of compute processes and data servers in each node. An
instance of CCA framework will be started on each compute
process/data server. Each instance of the CCA framework will
then initialize components and build connections between
components and between components and the framework
according to user inputs. All the components and connections
contained in a framework are identical on each process. The
GAMESS CCA components contained in the framework of
each process will start a DDI initialization procedure for that
process. However, in this case, only the GAMESS CCA
components have the communication ability because only
GAMESS uses DDI as the communication mechanism. The
CCA framework or other components under the same
framework cannot communicate with each other within
processes, since under the GAMESS/DDI model, DDI uses
TCP/IP sockets as communication tools while other
communication mechanisms used by the CCA framework or
other components, such as MPI, have not been initialized.

Fig. 3. The numbers along with the arrows show the sequence of how the DDI
kickoff program starts the remote DDI kickoff processes. First, the DDI
kickoff program starts the master DDI kickoff process (the white one) in Node
0. Then, it starts a copy of remote DDI kickoff process (the blue one) in Node
1. Both DDI kickoff processes in Node 0 and Node 1 will send commands to
start the remote DDI kickoff processes (the yellow ones) on Node 2 and Node
3. Next, all the DDI kickoff processes will start the remote DDI kickoff
processes in other Nodes if needed. The same procedure will continue until all
the required nodes have a copy of DDI kickoff program running. Finally, each
copy of the DDI kickoff program will create one compute process and one data
server process on each CPU and GAMESS (or other programs) will be running
in each compute/data server process.

Fig. 4. Under this model, one compute process/data server pair is created for
each CPU. The CCA framework (green part) is running on each compute
process and data server. A is the driver component, which gets the model object
from B (the GAMESS component) through Provides/Uses ports. C is the
MoleculeFactory component, which provides the molecule object to the
GAMESS CCA component. The yellow area is the portion of distributed arrays
that stored in the local shared memory of a node, where the compute processes
and data server processes can directly access. The communication of processes
among different nodes is through the TCP/IP sockets connections.

HPC-GECO/CompFrame Workshop 2006

Figure 4 shows a simple structure of the GAMESS/DDI
model under the CCA framework. The DDI kickoff process on
each node first starts one compute process and one data server
for each CPU of that node, and then each compute process and
data server starts an instance of the CCA framework. The
framework and the component instances and connections that
are contained in the CCA framework are identical for all
processes. As long as the DDI initialization procedure succeeds
and the communication layer of DDI is established, the
GAMESS CCA components within the same node can directly
access the distributed arrays that are stored in the local shared
memory of that node, and the GAMESS component in data
servers among different nodes can communicate with each
other by using TCP/IP.

The major difficulty we encountered in designing this model
is passing command-line arguments from the CCA framework
to the GAMESS CCA components. The GAMESS component
has to start the DDI initialization procedure, instead of the CCA
framework, and the command-line arguments must be passed
from the DDI kickoff program to the CCA framework on each
process. Without the command-line arguments, DDI
initialization cannot connect with the corresponding DDI
kickoff program in that host machine, and the communication
layers cannot be established correctly. To solve the problem,
the Stovepipe Library provided by the CCA framework is used
to convey the argument list from the CCA framework to the
GAMESS CCA components.

D. GAMESS/DDI/MPI Model under CCA Framework
DDI also supports a mixed MPI/TCP model in which

processes are started with the MPI startup program instead of
the DDI kickoff program. In this model the compute
process/data server mechanism is also used, such that for each
CPU, there are one compute process and one data server
process. Also, processes in the same node have direct access to
the portion of distributed arrays in the local shared memory of
that node. This is different from the previous model in two
ways. First, both MPI and TCP/IP are used for communication
between processes among different nodes. MPI is used to pass
the actual data, such as a part of distributed arrays, when a
process tries to access the portion of the distributed arrays that
is not in its local shared memory. The TCP/IP is used for some
smaller messages, such as a system call for waking up a
sleeping process. The mixed message passing method is used,
since most MPI implementations require a process to
continuously check for the incoming calls. Thus, using pure
MPI will make a data server compete for CPU resources with
compute processes. In the TCP/IP implementation, while
waiting for a request, each data server process is put to sleep,
thus essentially yielding full CPU access to the compute
process [12]. Therefore, the mixed MPI/ TCP model for DDI
should out-perform using pure MPI.

The second mechanism for the GAMESS CCA components
is based on the mixed MPI/TCP model of DDI. This model
allows parallelization of the CCA framework, since the CCA
framework also uses MPI as one method of passing messages
between processes. The CCA framework will start the MPI
Fig. 5. Under this model, half of the processes will be assigned as compute
processes and the other half will be assigned as data server processes by the
DDI initialization procedure. The CCA framework (the green area) is running
on each process, where A is the driver component, which gets the model object
from the GAMESS component through the CCA Provides/Uses port. C is the
MoleculeFactory component, which provides the molecule object to B,
GAMESS CCA component. The yellow area is the portion of distributed arrays
in the local shared memory of a node, to which the compute processes and data
server processes have direct access. The communication of all the processes for
A and C is enabled by MPI. The communication of the processes in the different
nodes for GAMESS CCA component is enabled by either MPI or TCP/IP.

initialization procedure, and the DDI communication level will
be initialized by the GAMESS CCA components. To enable
communication in GAMESS, DDI requires an even number of
processes in each host machine; such that the processes can be
divided equally into compute processes and data server
processes. This will not affect the communication of the CCA
framework and other components under the same framework,
since DDI just gathers information from MPI Common World
group without modifying anything in the configuration of MPI
program.

The general structure of how the GAMESS CCA
components and other components run under this model is
shown in Figure 5. When the GAMESS CCA Components run
under the DDI/MPI model, the MPI program is used for starting
up all the processes. The CCA framework runs on each process,
which contains a driver component, a molecule factory
component and a model factory component. While components
in a single framework communicate with each other by
Provides/Uses ports, the communication mechanism of similar
components among different processes depends on the
implementation of each component. The GAMESS CCA
components in the compute processes and data server processes
of the same node use local System V operations for accessing
the data in the local shared memory of that node. The
communication between all the molecule factory components
uses MPI, and the same is true for the communication of driver
components among the different processes. The
communication of GAMESS CCA components in the different
nodes is enabled by either MPI or TCP/IP.

HPC-GECO/CompFrame Workshop 2006

E. Performane Evaluation
To test the overhead of the CCA framework in GAMESS

calculations, we compared the run time of the same set of
GAMESS calculations with the original GAMESS program
and by using the GAMESS CCA components. We performed
all the tests on the following architecture: a cluster with 8 nodes,
including four dual CPU Intel XEON™ nodes and four
single-CPU nodes. All the nodes are running Debian Sarge
w/Linux 2.6.6 kernels.

First, all the jobs are running in one processor. Table 1 shows
the run time for four different GAMESS calculations. The
results show that for three of the calculations using the
GAMESS CCA components incurs less than 10 percent
overhead.

Then, we run the Hessian calculation of the molecule
“Glycine” in parallel for comparing the scalability of the
original GAMESS program and the GAMESS CCA
components. Figure 6 shows that the scalability of the
GAMESS CCA components is about 10-15% less than the
scalability of the original GAMESS program, which is still
compatible.

III. COUPLING GAMESS THROUGH CCA
With the GAMESS CCA interface constructed, the

interoperation of GAMESS with other software packages can
be done under the CCA framework. As an example, we chose
to integrate GAMESS with a performance tool package, and to
provide an interaction mechanism for GAMESS and
NWChem.

A. Performance Sub-system for GAMESS
Within the scope of GAMESS, performance bottlenecks can

occur in many places such as cache utilization, I/O or
communication. Performance evaluation and monitoring tools
for each of these potential bottlenecks may take years to
develop, so starting from scratch is not a feasible solution. A
useful approach is to use existing performance tools such as
TAU (Tuning and Analysis Utilities) or PAPI [20], and
incorporate them into GAMESS. These performance tools
usually provide APIs for application developers to develop
performance evaluation functions according to application
needs.

Incorporating performance tools into GAMESS usually
requires inserting performance function calls into the
GAMESS source code, which is an intrusive approach. With
GAMESS components, we prefer a performance tool that
provides an interface compatible with the CCA standard, such
that the access to performance tool APIs can be through
component ports instead of direct calls to the API. In particular,
the TAU performance system meets our requirements.

Fig. 6. The Hessian calculation of the molecule “Glycine” run on both the
original GAMESS program and the GAMESS CCA component, which we
labeled as “without CCA” and “with CCA”, respectively.

1) TAU Performance System
TAU is based on a general computation model [13], which is

a superset of the one used by GAMESS. It provides technology
for performance instrumentation, measurement, and analysis
for complex parallel systems. Performance information can be
captured at the node/context/thread level by using TAU.
Besides performance instrumentation capability on both the
component level [21] and the source code level, TAU also
provides an interface to access the hardware counters through
PAPI or PCL [21].

For CCA applications, TAU provides a performance
component to measure the performance of CCA component
software through the common MeasurementPort interface.
Besides the performance component, TAU also provides
MasterMind and Optimizer components for performance data
collection for performance modeling of components and
constructs optimal component assemblies, and Proxy
Generators build proxies for both the MeasurementPort and the
Monitorport in performance component [22]. To successfully
install the TAU performance component and use all the
provided functionality, both TAU and PDT (Program Database
Toolkit) [23] must first be installed TAU performance
components then can be set up.

TABLE I
WALLCLOCK TIME OF GAMESS CALCULATIONS WITH AND WITHOUT CCA

Wallclock Time in Seconds (percentage of extra time)
GAMESS CCA Components Molecule

GAMESS GAMESS/DDI GAMESS/DDI/MPI
Glycine 61 61 (0%) 62 (1.6%)

Nicotine 1931 2308 (19.5%) 2300 (19.1%)

Firefly Luciferin 5905 6158 (4.3%) 5785 (-2%)

Ergosterol 29088 30592 (5.2%) 31856 (9.5%)

2) Integration of GAMESS and TAU
For measuring the performance of the GAMESS CCA

components, the PerformanceMeasurement component can be
used. With TAU's CCA performance component installed and
environmental variables set up properly, performance
evaluation methods can be invoked in a component by
connecting to the PerformanceMeasurement component
through the Provides/Uses MeasurementPort under the CCA
framework.

Performance evaluation on the component level is only a
coarse grain evaluation, since the interactions of functions
inside a component cannot be identified. For example, if we set
the profiling interval of memory usage to one second in a
Hessian evaluation, at the end of the computation we can plot
the memory usage with time. This memory profiling only tells

HPC-GECO/CompFrame Workshop 2006

us the memory usage of the whole Hessian computation; the
memory usage of the energy and gradient upon which the
Hessian is based, are within the plot of Hessian memory usage
and cannot be isolated, unless we also develop components or
methods inside the component for the energy and gradient. In
other words, the detailed performance information available is
determined by the granularity of GAMESS components.
Through analysis and experiments of GAMESS, we concluded
that source-code level instrumentation is unavoidable for
developing a performance sub-system of GAMESS.

Even with the capability of the TAU performance tool,
designing a useful performance sub-system for GAMESS
requires careful analysis instead of simply inserting
performance evaluation functions. For the present purpose we
show the results of tracking memory usage for the same
GAMESS computation, with CCA and without CCA. The
computation is to calculate the Hessian of glycine. We
measured the amount of memory used in each process. Without
CCA, the maximum memory usage is 7.5 MBytes; with CCA,
the maximum memory usage is 8.5 MBytes. This simple
performance evaluation is to verify that usage of CCA will not
hinder GAMESS computation, as GAMESS or the other
chemistry packages usually requires a large amount of memory
for computations. The performance sub-system of GAMESS is
currently under development.

B. Integration of GAMESS and NWChem
1) NWChem and GAMESS

GAMESS and NWChem are two of the most popular
chemistry software packages in the computational chemistry
community. While there are overlapping functionalities in
GAMESS and NWChem, such as calculations of Hessian,
energy, and gradient, each has its strength in a certain area. For
example, GAMESS has a rich set of properties while NWChem
utilizes molecular symmetry better in some cases. Through
CCA, it is possible to use a wave function calculated by
NWChem as the starting wave function for a GAMESS
computation.

The design philosophies behind GAMESS and NWChem are
quite different. The approach GAMESS took is to be a
self-sustained software package, without relying on any
external packages. Thus the GAMESS development team
designed DDI and uses it for GAMESS parallel computations.
On the other hand, NWChem uses Global Arrays for
communications, which in turn relies on ARMCI [24] and MPI.

2) The Integration Processes
NWChem relies on the Global Array (GA) toolkit as the

underlying communication mechanism. GA and DDI are
similar in the sense that they both provide an interface by which
all processes in a parallel job can independently access and
modify any data element in a distributed array, even when the
array is physically distributed. They are also both compatible
with the conventional MPI program. Therefore, we started with
exploring whether we can instantiate the model factory
implemented for both NWChem and GAMESS under a single
CCA framework.

In principle, both model factories for NWChem and
GAMESS should be able to coexist under the same CCA
framework. However, certain limitations exist in the integration

of NWChem and GAMESS. The most significant one is the
different requirements on the message-passing IDs/numbers on
each host machine when integrating two model factories. In
most cases, the DDI program requires an even number of
processes on each host machine for dividing processes evenly
as compute processes and data servers. For NWChem we
observed that the ARMCI library requires consecutive
message-passing IDs/numbers on the same host machine. Thus,
both packages have their own restrictions on the configuration
of MPI program. Another major restriction is the termination of
model factories for both the NWChem and GAMESS under the
same CCA framework. In the version of NWChem CCA
interface we are currently using, the termination of the model
factory of NWChem will also terminate the MPI program and
even the CCA framework. The same is true for the current
design of GAMESS CCA interface. This should not be a
problem when only one model factory component is running
under a single CCA framework. However, when multiple
model factory components are instantiated and running under a
single CCA framework, the finalization of one component will
affect the correct termination of another.

IV. CONCLUSION
In this paper, we have presented our experience in designing

interoperation mechanisms for GAMESS with scientific
packages through the Common Component Architecture. To
verify the design of the GAMESS CCA components, we
integrated two packages, TAU and NWChem, with GAMESS
through CCA. While the integration with TAU was
straightforward, we encountered several difficulties in
integrating with NWChem. The difficulties steamed mainly
from the way the communication mechanisms of each
component co-exist and interact with the CCA framework.

In general, when developing components for a large legacy
code, we should consider not only its functionality and
performance, but also its compatibility with other components.
Their design of component parts, such as initialization and
finalization, should not affect the global settings of a CCA
framework, such as the configuration of MPI. In our
experience, designing components for existing legacy packages
is much more difficult than developing new components, as
compatibility plays an important role in the integration process.
The problem gets more complicated when two packages use the
same message-passing library and each package has its own
configuration to use the message-passing library. There are
two approaches for designing such a component. A component
can either use the traditional message-passing routines of the
legacy codes, or adapt to the message-passing systems
integrated in CCA or some other existing components [8]. The
prior case is easier for a component provider. However, this
case would allow each component to use different
message-passing systems, such that the implementation of each
component has to be very careful not to impose or create any
restrictions for the other components under the same
framework. For the latter case, it may require considerable
re-coding in the legacy codes. For either case, much effort is
required for programmers and unexpected problems can

HPC-GECO/CompFrame Workshop 2006

emerge. A balanced approached should be developed for
solving this issue, which may require a new standard or
specification from the CCA groups in dealing with the
compatibility issues when integrating different parallel
computing packages.

While considerable efforts are still required to develop
interfaces for numerous computations in GAMESS, many
scientific codes may already benefit from the GAMESS CCA
components. Since GAMESS is a very popular code, the
success of GAMESS-CCA will encourage more software
packages to adopt component paradigm gaining in flexibility
computational capabilities.

ACKNOWLEDGMENT

We thank Manojkumar Krishnan and Theresa L. Windus
from PNNL, and Joseph P. Kenny from Sandia National
Laboratories for their helpful discussions on CCA and
chemistry components, and Ryan M. Olson, Jonathan Bentz
and Brett Bode from the Scalable Computing Laboratory of
Ames Lab for the information on GAMESS and DDI.

REFERENCES
[1] M. W. Schmidt, K. K. Baldridge, J. A. Boatz, S. T. Elbert, M. S. Cordon,

J.H. Jensen, S. Koseki, N. Matsunaga, K. A. Nguyen, S. J. Su, T. L.
Windus, M. Dupuis, J. A. Montgomery, “General Atomic and Molecular
Electronic Structure System”, J. Comput. Chem. 14, 1347-1363 (1993)

[2] CCA-Forum. Common Component Architecture Forum.
http://www.cca-forum.org

[3] D. E. Bernholdt, B. A. Allan, R. Armstrong, F. Bertrand, K. Chiu, T. L.
Dahlgren, K. Damevski, W.R. Elwasif, T. G. W. Epperly, M. Govindaraju,
D. S. Katz, L. F. Diachin, J. A. Kohl, M. Krishnan, G. Kumfert, S.
Lefantzi, M. J. Lewis, A. D. Malony, L. C. McInnes, J. Nieplocha, B.
Norris, S. G. Parker, J. Ray, S. Shende, T. L. Windus, and Zhou. S., “A
Component Architecture for High-Performance Scientific Computing,”
Intl. J. High-Perf. Computing Appl., 2004.

[4] Babel, http://www.llnl.gov/CASC/components/babel.html
[5] Steve Vinoski, "CORBA: Integrating Diverse Applications Within

Distributed Heterogeneous Environments," IEEE Communications
Magazine, vol. 14, no. 2, February 1997

[6] COM, http://www.microsoft.com/com/default.mspx
[7] JavaBean, http://java.sun.com/products/javabeans/
[8] D. E. Bernholdt, Wael R. Elwasif, and James A. Kohl, “Communication

Infrastructure in High-Performance Component-Based Scientific
Computing”, Proceedings of the 9th European PVM/MPI Users' Group
Meeting on Recent Advances in Parallel Virtual Machine and Message
Passing Interface, pages: 260 – 270 (2002)

[9] MPI, Message Passing Interface, http://www.mpi-forum.org
[10] PVM, Parallel Virtual Machine, http://www.csm.ornl.gov/pvm/
[11] J. Nieplocha, RJ Harrison, and RJ Littlefield, Global Arrays: A

nonuniform memory access programming model for high-performance
computers, The Journal of Supercomputing, 10:197-220, 1996

[12] Ryan M. Olson, Michael W. Schmidt, Mark S. Gordon, Alistair P. Rendell,
“Enabling the Efficient Use of SMP Clusters: The GAMESS/DDI Model”,
SC’03, November 15-21, 2003, Phoenix, Arizona, USA

[13] S. Shende and A. D. Malony, "The TAU Parallel Performance System,"
(submitted to) International Journal of High Performance Computing
Applications, ACTS Collection Special Issue, 2005.

[14] Aprà, E.; Windus, T.L.; Straatsma, T.P.; Bylaska, E.J.; de Jong, W.; Hirata,
S.; Valiev, M.; Hackler, M.; Pollack, L.; Kowalski, K.; Harrison, R.;
Dupuis, M.; Smith, D.M.A; Nieplocha, J.; Tipparaju V.; Krishnan, M.;
Auer, A.A.; Brown, E.; Cisneros, G.; Fann, G.; Fruchtl, H.; Garza, J.;
Hirao, K.; Kendall, R.; Nichols, J.; Tsemekhman, K.; Wolinski, K.;
Anchell, J.; Bernholdt, D.; Borowski, P.; Clark, T.; Clerc, D.; Dachsel, H.;
Deegan, M.; Dyall, K.; Elwood, D.; Glendening, E.; Gutowski, M.; Hess,

A.; Jaffe, J.; Johnson, B.; Ju, J.; Kobayashi, R.; Kutteh, R.; Lin, Z.;
Littlefield, R.; Long, X.; Meng, B.; Nakajima, T.; Niu, S.; Rosing, M.;
Sandrone, G.; Stave, M.; Taylor, H.; Thomas, G.; van Lenthe, J.; Wong,
A.; Zhang, Z.; "NWChem, A Computational Chemistry Package for
Parallel Computers, Version 4.7" (2005), Pacific Northwest National
Laboratory, Richland, Washington 99352-0999, USA.

[15] GAMESS, The General Atomic and Molecular Electronic Structure
System (GAMESS) Homepage,
http://www.msg.ameslab.gov/GAMESS/GAMESS.html.

[16] TCGMSG, http://www.emsl.pnl.gov/docs/parsoft/tcgmsg/tcgmsg.html
[17] The CCA Chemistry Component Toolkit,

http://www.cca-forum.org/~cca-chem/
[18] J. P. Kenny, S. J. Benson, Y. Alexeev, J. Sarich, C. L. Janssen, L. C.

McInnes, M. Krishnan, J. Nieplocha, E. Jurrus, C. Fahlstrom and T. L.
Windus, "Component-Based Integration of Chemistry and Optimization
Software", Journal of Computational Chemistry, 24(14) 1717-1725
(2004).

[19] MPQC, The Massively Parallel Quantum Chemistry Program,
http://www.mpqc.org

[20] Browne, S., Deane, C., Ho, G., Mucci, P. "PAPI: A Portable Interface to
Hardware Performance Counters," Proceedings of Department of Defense
HPCMP Users Group Conference, June 1999.

[21] R. Berrendorf and B. Mohr. “PCL -- The Performance Counter Library: A
Common Interface to Access Hardware Performance Counters on
Microprocessors”. Technical report, Research Centre Juelich GmbH,
Juelich, Germany, September 2000.

[22] TAU’s CCA Tools, http://www.cs.uoregon.edu/research/tau/cca
[23] PDT, Program Database Toolkit,

http://www.cs.uoregon.edu/research/pdt/pubs.php
[24] Jarek Nieplocha and Bryan Carpenter. “ARMCI: A Portable Remote

Memory Copy Library for Distributed Array Libraries and Compiler
Run-time Systems.” Proc. 3rd Workshop on Runtime Systems for Parallel
Programming (RTSPP) of International Parallel Processing Symposium
IPPS/SPDP '99, San Juan, Puerto Rico, April 1999, in (1) J. Rolim eat al.
(eds.) Parallel and Distributed Processing, Springer Verlag LNCS 1586,
and (2) IPPS/SDP'99 CDROM, 1999.

[25] HPC++ Working Group, "HPC++ White Papers," Technical Report TR
95633, Center for Research on Parallel Computation, 1995.

[26] M. Krishnan, Y. Alexeev, T. L. Windus and J. Nieplocha, "Multilevel
Parallelism in Computational Chemistry using Common Component
Architecture", Supercomputing 2005, November 12-18, 2005, Seattle,
Washington, USA

[27] S. Shende, A. D. Malony, C. Rasmussen, M. Sottile, "A Performance
Interface for Component-Based Applications," Proc. International
Workshop on Performance Modeling, Evaluation, and Optimization of
Parallel and Distributed Systems, IPDPS'03, IEEE Computer Society,
278, 2003

http://www.cca-forum.org/
http://www.llnl.gov/CASC/components/babel.html
http://www.microsoft.com/com/default.mspx
http://java.sun.com/products/javabeans/
http://www.mpi-forum.org/
http://www.csm.ornl.gov/pvm/
http://www.msg.ameslab.gov/GAMESS/GAMESS.html
http://www.emsl.pnl.gov/docs/parsoft/tcgmsg/tcgmsg.html
http://www.cca-forum.org/~cca-chem/
http://www.mpqc.org/
http://www.cs.uoregon.edu/research/tau/cca
http://www.cs.uoregon.edu/research/pdt/pubs.php

	INTRODUCTION
	GAMESS CCA ComponentS
	The Structure of GAMESS Computations
	Chemistry Component Toolkit
	GAMESS/DDI Model under CCA Framework
	GAMESS/DDI/MPI Model under CCA Framework
	Performane Evaluation

	Coupling GAMESS through CCA
	Performance Sub-system for GAMESS
	TAU Performance System
	Integration of GAMESS and TAU

	Integration of GAMESS and NWChem
	NWChem and GAMESS
	The Integration Processes

	Conclusion
	We thank Manojkumar Krishnan and Theresa L. Windus from PNNL

