NUMERICAL LINEAR ALGEBRA WITH APPLICATIONS
Numer. Linear Algebra Appl. 2002; 9:1-25 Prepared using nlaauth.cls [Version: 2002/09/18 v1.02]

pARMS: a Parallel Version of the Algebraic Recursive Multilevel
Solver

Zhongze Li'»t, Yousef Saad?** and Masha Sosonkina®?

1 INRIA Projet CAIMAN, 2004 Route des Lucioles, B.P. 98, 06902 Sophia-Antipolis Cedex, France.
2 University of Minnesota, 200 Union Street S.E., Minneapolis, MN 55455, U.S.A.
3 University of Minnesota - Duluth, 320 Heller Hall, 10 University Drive, Duluth, MN 55812-2496, U.S.A.

SUMMARY

A parallel version of the Algebraic Recursive Multilevel Solver (ARMS) is developed for distributed
computing environments. The method adopts the general framework of distributed sparse matrices
and relies on solving the resulting distributed Schur complement system. Numerical experiments
are presented which compare these approaches on regularly and irregularly structured problems.

Copyright (© 2002 John Wiley & Sons, Ltd.

KEY WORDS: multilevel ILU preconditioner; parallel preconditioning; Schur complement precondi-
tioner; distributed sparse linear systems; domain decomposition; multigrid

1. Introduction

Two competing classes of iterative methods can be used for solving large linear systems of
equations: multigrid techniques and (preconditioned) Krylov subspace techniques. Methods
in the first group are known to be optimal, in terms of overall cost, for certain types of
problems. Their implementation requires a hierarchy of (simple) grids and may necessitate
specific tailoring for particular applications. Algebraic MultiGrid (AMG) methods have been
proposed as an alternative, for solving more general problems, but their overall success, which
in theory still relies on an underlying PDE problem, has been somewhat limited. In contrast,
preconditioned Krylov methods, using incomplete LU (ILU) preconditioners, are designed to
be “general-purpose” methods for solving arbitrary sparse linear systems of equations. In the

*Correspondence to: Y. Saad, Department of Computer Science and Engineering, University of Minnesota, 200
Union Street S.E., Minneapolis, MN 55455, U.S.A.

TE-mail: Zhongze.Li@sophia.inria.fr

fE-mail: saad@cs.umn.edu

$E-mail: masha@d.umn.edu

Contract/grant sponsor: NSF; contract/grant number: ACI-0000443
Contract/grant sponsor: NSF; contract/grant number: INT-0003274
Contract/grant sponsor: Minnesota Supercomputing Institute

Received 81 August 2001
Copyright (© 2002 John Wiley & Sons, Ltd. Revised 7 May 2002
Accepted

2 Z. LI, Y. SAAD AND M. SOSONKINA

past, users have often sacrificed the speed of multigrid for the better robustness and generality
of preconditioned Krylov solvers. However, as the problems become larger the advantage of
multilevel approaches can be overwhelming. An attractive middle-ground solution would be a
method whose cost scales well with the size of the problem and which is as general purpose as
the ILU-Krylov combination.

A number of methods were recently developed to try to fill this gap by introducing
concepts borrowed from multilevel methods into incomplete factorizations. ILUM [1] and a
few related methods [2, 3] showed that this approach is fairly robust and that it scales well
with problem size, in contrast with standard ILU preconditioners. The idea was extended to
block versions using essentially domain decomposition type strategies [4, 5, 6]. In [5, 6, 7] it
was shown that the block approach is generally more efficient and more robust than a standard
ILUT-preconditioned GMRES [8] and than its scalar sibling ILUM. A number of similar
techniques have been derived by taking the opposite viewpoint, i.e., by starting from algebraic
multigrid solvers, see for example [9, 10]. Other methods have also tried to integrate general
purpose approximate inverse preconditioners as smoothers in multilevel techniques [11, 12].
Recently, parallel software packages have emerged which are based on, or include, AMG
preconditioners [13, 14, 15].

It is often advocated that the complexity of implementing these methods outweighs any
gains made in efficiency over simpler techniques such as the Additive Schwarz procedures. It
is hoped that this paper will demonstrate that this is not the case. It is possible to obtain
good efficiencies while using only the local data structures used by the Schwarz procedures.
A similar point was made in [16] using a Schur complement viewpoint. It was shown that
global preconditioners can be designed from techniques which approximately solve the Schur
complement system associated with interface variables. In this paper we extend this idea by
using the Algebraic Recursive Multilevel Solvers (ARMS) framework.

The paper is organized as follows. Section 2 gives an overview of the sequential ARMS
preconditioner. Distributed Schur complement and Additive Schwarz techniques, which serve
as building blocks for the proposed parallel ARMS implementation, are outlined in Section 3.
A more detailed description of the parallel ARMS design and implementation can be found
in Section 4 followed by a few sets of numerical experiments, in Sections 5 and 6. Concluding
remarks are presented in Section 7.

2. Sequential ARMS — basic notions

The multi-level ILU preconditioners developed in [1, 3, 4, 5, 17] exploit the property that
a set of unknowns that are not coupled with each other can be eliminated simultaneously
in Gaussian elimination. Such sets are termed “independent sets”, see e.g., [18]. In [4], the
ILUM factorization described in [1] was generalized by resorting to “group-independent sets”.
A group-independent set is a set of groups of unknowns such that there is no coupling between
unknowns of any two different groups [4]. Unknowns within the same group may be coupled.
This is illustrated in Figure 1. In the Algebraic Multigrid literature, certain types of group-
independent sets are referred to as “aggregates” [19]. Simple methods for finding standard
(point) and group (block) independent sets have been considered in [1, 4] and elsewhere.

In many existing forms of multilevel ILU factorizations [1, 2, 3, 9] the unknowns are
reordered, listing the nodes associated with the group independent sets first, followed by the

Copyright (© 2002 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2002; 9:1-25
Prepared using nlaauth.cls

PARMS: A PARALLEL ALGEBRAIC RECURSIVE MULTILEVEL SOLVER 3

N

No Coupling

\
\
v
(
)
. :i : : L

Figure 1. Group independent sets.

other unknowns. After this reordering, the original system A;z; = b; at the I-th level takes the

following form
B F\ (w Ji
= . 1
(5 &) () =) 8

At the zero-th level (I = 0) the system A;x; = b; is the original coefficient matrix of the linear
system under consideration. The above reordered matrix is then approximately factored as

~1
P s (g T)x (TR, @
E C EUT T 0 A

where T is the identity matrix, L; and U form the LU (or ILU) factors of By, and A;;; is an

approximation to the Schur complement with respect to C,

A = C = (BUTYILTHR). (3)

During the factorization process, approximations to the matrices G; = E;U, l_l and W; = Ll_lFl
are computed for obtaining the Schur complement (3) but these two matrices are discarded
after A;;1 is computed. Typically it is inexpensive to solve linear systems with U; and L; since
these arise from an ILU-type factorization. Therefore, observe that all we need for defining
a preconditioning for A; is to provide a way to solve the reduced system, i.e., the system
associated with A;;;1 obtained by eliminating the unknowns associated with the block B;. It
is here that different methods proposed vary.

Solving a linear system with the matrix in (2) requires the following three operations:
a forward solve followed by a solve with the coarser level matrix A;41, and followed by a
backward solve. The first and third operations move from one level to another and are similar
to the restriction and prolongation operations in multigrid techniques. We refer to these as a
downward and an upward operation, respectively. The descend operation leads to the system

Appr Xy =biyr b1 =g — EUT'L7'f (4)

Notice that y; and x;41 denote the same unknown. At any given step, the system at the next
level, i.e., the system (4), is solved by an unspecified approximate or exact solution technique.
The variations that arise are related to the ways in which this coarser level system is solved.
In [6], we have implemented several different options and tested them. The simplest option
available is referred to as VARMS [in analogy with the V-cycle multigrid]. If the current

Copyright © 2002 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2002; 9:1-25
Prepared using nlaauth.cls

4 Z. LI, Y. SAAD AND M. SOSONKINA

level is not the last, VARMS continues to descend by using the level-structure, then solves
the last-level system with GMRES-ILUT, and ascends back to the current level. Another
option, not considered in this paper, is referred to as WARMS. At the difference with VARMS,
WARMS iterates when solving the intermediate linear systems by using a few steps of GMRES
with VARMS as a preconditioner. The last level system is again solved with GMRES-ILUT.
For reference, we reproduce here the description of the VARMS recursive solution from [6].

ALGORITHM 2.1. VARMS-solve(A;,b;) — Recursive Multi-Level Solution
1. SolveL; f| = fi

Ascend, i.e., compute f' = f/ — L7 'F; y,
Back-Substitute u; = Ul_1 i

2. Descend, i.e., compute b;y1 := g; — ElUl_1 fl

3. Ifl=last.lev then

4. Solve Ajy1y1 = biy1 using GMRES+ILU factors
5. Else

6. Ym+1 = VARMS-solve(Ai11,bi+1)

7. Endif

8.

9.

3. Preconditioning of distributed sparse linear systems

The framework we adopt for solving large sparse linear systems on parallel platforms is that of
a distributed sparse linear system. This viewpoint generalizes Domain Decomposition methods
to irregularly structured sparse linear systems. A typical distributed system arises, for example,
from a finite element discretization of a partial differential equation on a certain domain. To
solve such systems on a distributed memory computer, it is common to partition the finite
element mesh by a graph partitioner and assign a cluster of elements which represent a physical
subdomain to each processor. Each processor then assembles only the local equations associated
with the elements assigned to it. The general assumption is that each processor holds a set of
equations (rows of the linear system) and a vector of the variables associated with these rows.

Figure 2 shows a ‘physical domain’ viewpoint of a sparse linear system. As is often done,
we will distinguish between three types of unknowns: (1) Interior variables are those that
are coupled only with local variables by the equations; (2) Interdomain interface variables
are those coupled with non-local (external) variables as well as local variables; and (3)
External interface variables are those variables in other processors which are coupled with
local variables. The local equations can be represented as shown in Figure 3. Note that these
equations are not contiguous in the original system. The matrix represented in the figure can
be viewed as a reordered version of the equations associated with a local numbering of the
equations/unknowns pairs.

As can be seen in Figure 3, the rows of the matrix assigned to a certain processor have been
split into two parts: a local matrix A; which acts on the local variables and an interface matrix
X; which acts on remote variables. These remote variables must be first received from other
processor(s) before the matrix-vector product can be completed in these processors. Most data
structures for distributed sparse matrices list the interface nodes separately, usually by ordering
them after the interior nodes. This ‘local ordering’ of the data presents several advantages,

Copyright © 2002 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2002; 9:1-25
Prepared using nlaauth.cls

PARMS: A PARALLEL ALGEBRAIC RECURSIVE MULTILEVEL SOLVER 5

External interface
points

- - -

S

\ . .
. Interdomain interface
N points__ -

-

N - — -

-

Figure 2. A local view of a distributed sparse matrix.

L Externd data loca — Externd data

@ A @
77777777777 Xi | o Xi

Figure 3. A partitioned sparse matrix.

including more efficient interprocessor communication, and reduced local indirect addressing
during matrix-vector products. It should be noted that the use of block sparse row format can
also yield a substantial reduction in indirect addressing. The zero blocks in the figure shown
are due to the fact that local internal nodes are not coupled with external nodes.

Thus, each local vector of unknowns z;, (1 = 1,...,p) is split in two parts: the subvector u; of
internal nodes followed by the subvector y; of interdomain interface variables. The right-hand
side b; is conformally split in the subvectors f; and g;,

z; = <u1> ;o b= (fi> . (5)
Yi 9i
The local matrix A; residing in processor ¢ as defined above is block-partitioned according to

Copyright © 2002 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2002; 9:1-25
Prepared using nlaauth.cls

6 Z. LI, Y. SAAD AND M. SOSONKINA

this splitting, leading to

With this, the local equations can be written as follows:

(g: g) (Z:) - (ZjeN?Eijyj) B (5:) ‘ (7)

The term FE;;y; is the contribution to the local equation from the neighboring subdomain
number j and N; is the set of subdomains that are neighbors to subdomain ¢. The sum of
these contributions, seen on the left side of (7), is the result of multiplying a certain matrix by
the external interface variables. It is clear that the result of this product will affect only the
interdomain interface variables as is indicated by the zero in the upper part of the second term
in the left-hand side of (7). For practical implementations, the subvectors of external interface
variables are grouped into one vector called y; ..+ and the notation

Z Eivy; = XY et

JEN;
will be used to denote the contributions from external variables to the local system (7). In
effect, this represents a local ordering of external variables to write these contributions in a
compact matrix form. With this notation, the left-hand side of (7) becomes

w; = Ait; + Xi extli,ext- (8)

Note that w; is also the local part of the matrix-vector product Az in which z is a vector
which has the local vector components x;.

3.1. Additive Schwarz preconditioning

Preconditioners for distributed sparse linear systems are best designed from the local structure
described above. Additive and (variants of) multiplicative Schwarz procedures are the simplest
preconditioners available. Additive Schwarz procedures, update the local solution by the vector
obtained from solving the linear system formed by the local matrix and the local residual. The
exchange of data is done through the computation of the residual. In simple terms, the Additive
Schwarz preconditioners can be stated as follows:

ALGORITHM 3.1. Additive Schwarz
1. Update local residual r; = (b — Azx);
2. Solve Azéz =T;
3. Update local solution x; = x; + 6;

This loop is executed on each processor simultaneously. Exchange of information takes place
in Line 1, when the (global) residual is updated. Note that the residual is “updated” in that
only the y-part of the right-hand side is changed. The local systems A;6; = r; can be solved
in three ways: (1) By a (sparse) direct solver, (2) by using a standard preconditioned Krylov
solver, or (3) by performing a backward-forward solution associated with an accurate ILU
(e.g., ILUT) preconditioner. Experiments show that option (3) or option (2) with only a very
small number of inner steps (e.g., 5) is quite effective.

Copyright © 2002 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2002; 9:1-25
Prepared using nlaauth.cls

PARMS: A PARALLEL ALGEBRAIC RECURSIVE MULTILEVEL SOLVER 7

3.2. Schur complement techniques

Schur complement techniques refer to methods which iterate on the interdomain unknowns
only, implicitly using internal unknowns as intermediate variables. These techniques are at
the basis of what will be described in the next sections. Schur complement systems are
derived by eliminating the variable u; from the system (7). Extracting from the first equation
U; = Bi_l(fi — F,y;) yields, upon substitution in the second equation,

Siyi + Z Eiy;=g9:— E:B;'fi =g, 9)
JEN;
where S; is the “local” Schur complement
S; =C; — E;B;'F,. (10)

The equations (9) for all subdomains ¢ (i = 1,...,p) constitute a global system of equations
involving only the interface unknown vectors y;. This global reduced system has a natural
block structure related to the interface points in each subdomain:

Sl E12 e Elp ?/1 gi
E21 52 e E2 yg gl

) A N e R (11)
Epl Ep_LQ P Sp yp g;)

The diagonal blocks in this system, the matrices S;, are dense in general. The off-diagonal
blocks E;;, which are identical with those involved in the system (7), are sparse.
The system (11) can be written as
Sy=4g,

where y consists of all interface variables y1,ys,...,y, stacked into a long vector. The matrix
S is the “global” Schur complement matrix. An idea proposed in [16] is to exploit methods
that approzimately solve the reduced system (11) to develop preconditioners for the original
(global) distributed system. The resulting “global” preconditioner is said to be “induced” from
the technique used for the Schur complement. Once the global Schur complement system (9)
is (approximately) solved, each processor will compute the u-part of the solution vector (see
(5)) by solving the system B;u; = f; — E;y; obtained by substitution from (7). In summary, a
Schur complement iteration may be expressed by the following algorithm:

ALGORITHM 3.2. Schur Complement Iteration — Template
1. Forward: compute local right-hand sides g; = g9, — E;B] Lf
2. Solve global Schur complement system Sy = ¢’
3. Backward: substitute to obtain u;, i.e., solve B;u; = f; — E;y;

Here, the similarity with ARMS is worth mentioning. The first step of every Schur
complement algorithm considered in this paper is to form the new right-hand side g =
gi — E;B; ! f;. This step is identical to the forward operation used for ARMS and corresponds
to solving with the L factor in a block LU factorization (see [16]). The second step requires
that we (approximately) solve the Schur complement system (9) in some way. At this stage,
the y variables are approximated. Finally, the third operation is the backward step, which
computes the rest of the unknowns by substitution.

Copyright © 2002 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2002; 9:1-25
Prepared using nlaauth.cls

8 Z. LI, Y. SAAD AND M. SOSONKINA

We now consider step two, solution of system (9), in more detail. For convenience, (9) is
rewritten as a preconditioned system with the diagonal blocks:

vt 71D Byys = 57 [0 - B:BTUf. (12)
JEN;

This can be viewed as a block-Jacobi preconditioned version of the Schur complement system
(11). This global system can be solved by a GMRES-like accelerator, requiring a solve with S;

at each step.
In [16], two techniques were examined for solving linear systems with .S;. The first one is
based on the observation that an LU (or ILU) factorization of S; can be easily extracted from
an LU (or ILU) factorization of A;. Specifically, if A; has the form (6) and it is factored as

Ai = L,Ul, where
— L, 0 o Us, LBIE

then, Lg,Ug, is equal to the Schur complement S; associated with the partitioning (6).
In other words, an ILU factorization for the Schur complement is the trace of the global
ILU factorization on the unknowns associated with the Schur complement. For a local Schur
complement, the ILU factorization obtained in this manner leads to an approximation S;
of the local Schur complement S;. The second method examined in [16] was based on using
approximate inverse techniques for computing an approximation to the local Schur complement

S;.

4. Parallel implementation of ARMS (pARMS)

In order to extend ARMS to a parallel framework, it is necessary to begin by generalizing the
notion of group-independent sets into Distributed Group-Independent sets (DGIS). A DGIS
is a set of subsets (groups) from all processors such that the unknowns of different groups
(within and across processors) are not coupled. It is clear that there is already one such set
available from the partitioning which is the set consisting of the internal nodes, subdomain
by subdomain. Distributed group-independent sets are easily obtained by further subdividing
these sets of interior nodes. Doing so will yield another category of points: local interface
points. An illustration is shown in Figure 4 for a simple case with two subdomains. The thick
line in the middle contains no vertices — it only illustrates the separation of the two domains.
The partitioning, which is vertex-based, is the same as the one seen in the previous section.
Once the system is distributed among processors, using a graph partitioner, an independent
set reordering is applied locally. One variation is that the independent set ordering does not
disturb, i.e., it does not reorder, the interdomain interface points. Instead, independent sets
are found among the interior points only.

With this viewpoint, the local matrix can be represented as in Figure 5, in which IS represents
the points in distributed group-independent sets, I1 represents the set of local interface points,
while I2 represents the set of interdomain interface points. In parallel ARMS, the points I1 and
12 are all treated as interface points, in the sense that the Schur complement system considered
may include both sets of points. When both types of points are included, we will refer to this
system as the expanded Schur complement. It is clear that, when dealing with two types of

Copyright © 2002 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2002; 9:1-25
Prepared using nlaauth.cls

PARMS: A PARALLEL ALGEBRAIC RECURSIVE MULTILEVEL SOLVER

T~

-

-~

Interior points

:n:er](cjomaln L ocal
nterraces Interfaces

Figure 4. A two-level group-independent set.

Figure 5. Matrix associated with 2-level partitioning

Copyright © 2002 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2002; 9:1-25

Prepared using nlaauth.cls

10 Z. LI, Y. SAAD AND M. SOSONKINA

interface points, some differences will arise. For example, I1-points require no communication
when solving the linear systems.

There are three distinct ways of using ARMS in a parallel environment. The simplest is to use
an Additive Schwarz procedure in which the local solver uses the ARMS preconditioner. The
second approach relies on a Schur complement-type technique in which, as was just explained,
the Schur complement relates to equations associated with (local and inter-processor) interface
points. This second approach yields a whole set of algorithms which arise from the different
ways the Schur complement system is solved. We can solve the Schur complement system by a
block-Jacobi procedure, and this would be similar to the work in [16]. In these two approaches,
the ARMS reordering is applied locally only. If the system to solve is very large, the Schur
complement system becomes itself quite costly to solve and it may be necessary to extend the
ARMS reordering for the interdomain interface variables. This constitutes the third approach
which is not considered in this paper. In the rest of this section, we present details of the
expanded Schur complement system and describe the preconditionings acting on it.

4.1. Global expanded Schur complement system

In this subsection, the local processor index 4,7 = (1,...,p), will be omitted whenever it is clear
that the related operations are local to processor i, The partitioning of the interior unknowns
u into group-independent sets defines their splitting into interior points 4 and local interface
points 4. The local system (7) can be permuted accordingly into a block form in which the
points 4 are labeled first followed by the local interface points @ and interdomain interface
points y (see also Figure 4):

B F F\ [a 0 f
E ¢ F')|a]+ 0 =|f (13)
E E' ¢) \y > ien Eiyj g

In system (13), the matrix B is block-diagonal. By eliminating the unknowns i from (13)
in each processor, the global erpanded Schur complement system, which corresponds to the
remaining unknowns z = (i, y), is formed.

0 — f_EA‘Bil]Z —
o (EjEN Ej?/j) a (g - E’B—lf) =9 (14)

where S is the “local” Schur complement, which corresponds to the local and interdomain

interface nodes: R " e o
s_(C F'_(EBT'F
“\E" ¢ E'B-'F)"

The structure of this expanded Schur complement system is similar to the one in equation (11)
and also has a natural block structure related to the interface points in each subdomain.

4.2. Additive Schwarz for the Schur complement

This consists of applying the Schur complement iteration (Algorithm 3.2) using the Schur
complement system derived from pARMS. The system (14), the expanded version of (9), can
be rewritten similarly to (12), as a preconditioned system with the diagonal blocks

0
Z+S_1 () :S_l la 15
EjeN Ejy; g (15)

Copyright © 2002 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2002; 9:1-25
Prepared using nlaauth.cls

PARMS: A PARALLEL ALGEBRAIC RECURSIVE MULTILEVEL SOLVER 11

This is simply a block-Jacobi preconditioned version of the global expanded Schur complement
system (14). In [16], incomplete LU factorizations and approximate inverses were used to
approximate the local S~!. Here, we apply a local ARMS procedure to obtain similar
approximations. In particular, when S is the last level & of the local ARMS recursion, i.e.,
S = Aj, a factorization can be defined as follows. Let Ap_; be block factored as in (6)
and followed by an (incomplete) LU factorization of the last matrix Ay = LpU;. Taken
separately, this part of the ARMS factorization can be used for the preconditioning of the
Schur complement system. For LU factorizations, this result has been established in [8]. In
the case of the ARMS preconditioner, it can be easily extended when local ARMS recursively
factors S. For a local Schur complement, an ARMS factorization obtained in this manner leads
to an approximation S of the local Schur complement S. Instead of the exact Schur complement
system (14), or equivalently (15), the following approximate (local) Schur complement system,
derived from (15), can be considered in each processor:

~ 0 -
+ Sil () = S_l I, 16
¢ >jen Eiyi g (16)

An algorithm is presented in [16] that applies, in each processor, the global approximate
Schur LU preconditioner to a block vector (f, g)? to obtain the solution (u,y)?". The algorithm
uses a small number of GMRES iterations without restarting to approximate the solution of
the local part of the Schur complement system (16).

4.3. Global incomplete LU preconditioning

In the previous subsection, the Schur complement system is solved by a Krylov subspace
accelerator with block-Jacobi as a preconditioner. More accurate solutions to the Schur
complement system may lead to a better convergence of the outer iteration. The distributed
ILU(0) preconditioner may be a good alternative to a block-Jacobi preconditioner or to an
SSOR preconditioner described [20]. We may use this approach as well to solve the Schur
complement system.

The Schur complement system considered here is again the expanded system which contains
local and interdomain interface points (see Figure 4). Interior points can be eliminated first,
simultaneously in each processor. Once this is done, the interdomain interface points can be
eliminated in a certain order. This is no different from standard distributed ILU(0) [8], except
that it is applied to the distributed Schur system instead of the original distributed system. The
global ordering used is based on a multicoloring of the domains, as this yields good parallelism
[8].

As was already mentioned the distributed ILU(0) preconditioner is applied to the local
interface and interdomain interface points. This technique is referred to as Schur Global ILU(0)
preconditioner, to distinguish it from the distributed ILU(0) applied to the original distributed
system. In what follows colorsfi] is the color of processor number i, mycolor is the color of the
current processor, ncolor is the number of colors.

ALGORITHM 4.1. Global ILU(0) factorization
1. Perform ARMS elimination on the rows associated with local
group-independent sets.
2. Perform ILU(0) on the local interface rows.
3. /* Perform ILU(0) on the interdomain interface rows: */

Copyright © 2002 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2002; 9:1-25
Prepared using nlaauth.cls

12 Z. LI, Y. SAAD AND M. SOSONKINA

4. for(i = 0; i < ncolor; i++){

5. if (mycolor ==1) {

6. Perform the ILU(0) factorization for the interdomain interface
rows with pivots from the local interface rows completed in
step 2;

7. Send the completed interdomain interface rows to adjacent
processors j, with colors[j] > mycolor.

}

8. else if (mycolor > i) {

9. Receive the factored rows from the adjacent processors
J with colors[j] == i;

10. Perform the ILU(0) factorization with pivots received from

the external processors in step 7.

}

In the above algorithm, steps 1 and 2 can be performed simultaneously in each processor.

The preconditioned Krylov subspace algorithm requires a forward and backward sweep at
each step. The distributed forward/backward solution based on this factorization is sketched
next.

ALGORITHM 4.2. Distributed forward and backward sweep
1. /* Forward solve: */
2 Perform the forward solve for the local interface nodes.
3 for(i =0; i <mncolor; i++){
4. if (mycolor ==1) {
5 Perform the forward solve for the interdomain interface nodes;
6 Send the updated values of interdomain nodes to the adjacent
processors j, with colors[j] > i.

7. else if (mycolor > i) {
8. Receive the updated values from the adjacent processors
J, with colors[j] ==1.

}

9. /* Backward solve: */

10. for(i = ncolor —1; i>=0; i——){

11. if (mycolor ==1) {

12. Perform the backward solve for the interdomain interface nodes;
13. Send the updated values of interdomain nodes to the adjacent

processors j, with colors[j] < i.

14. else if (mycolor < i) {
15. Receive the updated values from the adjacent processors
Jj, with colors[j] ==1.

}

Copyright © 2002 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2002; 9:1-25
Prepared using nlaauth.cls

PARMS: A PARALLEL ALGEBRAIC RECURSIVE MULTILEVEL SOLVER 13
16. Perform the backward solve for the local interface nodes.

The above algorithm only shows the forward/backward sweep in the last Schur complement.
As in the ILU(0) factorization, the local interface nodes do not depend on the nodes from the
external processors and can be computed in parallel in steps 2 and 16. In the forward solve,
the solution of the local interface nodes is followed by an exchange of data and the solution
on the interdomain interface. The backward solve works in reverse in that the interdomain
interface nodes are first computed, then they are sent to adjacent processors, and the local
interface update follows.

5. Numerical Experiments

In this section, we present a comparison of the preconditioners available in the pARMS
framework. Scalability experiments, in which the problem size and number of processors
grow, are first reported for two- and three-dimensional PDE problems on regular grids. A
performance comparison with a direct solver is included in these tests. We then report on a
few tests with fixed-size irregularly structured problems arising in magnetohydrodynamics.

5.1. Naming conventions for the methods tested

For the sake of convenience, let us introduce some notation for the preconditioning options
considered in pARMS. In general, the method names are of the form add X Y or sch X Y,
where the prefixes add and sch indicate whether the preconditioner has local operations only,
i.e., it is of Additive Schwarz type, or whether it requires external data communications, i.e.,
it is of Schur complement type, respectively. The letter X may stand for either an incomplete
LU factorization, such as ILUT or ILU(k) [8], or for ARMS. The global preconditioners of the
sch type may be also used with a global ILU(0) preconditioner gilu0 applied to the expanded
Schur complement system. This preconditioning option sch_gilu0 resembles the one in [16],
but it acts on the expanded Schur complement system (13) instead of (9), and it uses an ILU(0)
factorization instead of a block Jacobi preconditioner. A preconditioner name may be followed
by Y, which stands for no its and/or ovp, meaning that the preconditioner is applied without
inner (i.e., intra-domain) iterations and/or has overlapping, respectively. As is well-known
[21, 22, 23, 24, 25] overlapping improves the efficiency and scalability of Additive Schwarz
preconditioners. Many ways to overlap nodes have been considered in parallel environments.
In particular, Restrictive Additive Schwarz [26] showed good performance. In the experiments,
we consider a simple overlapping technique, in which the contributions of the overlapped nodes
are averaged upon their exchange among neighboring domains. This type of overlapping has
been used by many authors, see, for example, [27, 28, 29]. A few additional details are provided
below for each of the preconditioners considered.

add_ilut. Additive Schwarz procedure, with or without overlapping, in which ILUT is used
as a preconditioner for solving the local systems. These systems can be solved with a
given number of GMRES inner iterations or by just applying the preconditioner.

add_iluk. Similar to add_ilut but uses ILU(k) as a preconditioner instead of ILUT.

Copyright © 2002 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2002; 9:1-25
Prepared using nlaauth.cls

14 Z. LI, Y. SAAD AND M. SOSONKINA

add_arms. Similar to add_ilut but uses ARMS as a preconditioner for local systems.

sch_ilut. This method is the same as the one in [16]. It consists of solving the (global)
Schur complement system, associated with the interdomain interface variables, using a
block-Jacobi preconditioner. The ILUT factorization for the local Schur complement is
obtained as a ‘trace’ of the ILUT factorization on the interface variables. These local
ILUT factorizations are then used to precondition the global Schur complement system
in a block-Jacobi iteration. For details see [16].

sch iluk. This is the same as sch_ilut except that ILU(k) is used instead of ILUT.
sch_arms. This is the same as sch_ilut except that ARMS is used instead of ILUT.

sch_sgs. Symmetric block Gauss-Seidel preconditioning is used in solving the global Schur
complement system instead of a block-Jacobi preconditioning as described in [16]. This
preconditioning requires a global ordering, which is provided by multicoloring.

sch_gilu0. This method differs from the other Schur complement methods in that it is
based on approximately solving the expanded Schur complement with a global ILU(0)-
preconditioned GMRES. The ILU(0) preconditioning requires a global order (referred
to as a schedule in [30]) in which to process the nodes. A global multicoloring of the
domains is used for this purpose as is often done with global ILU(0).

5.2. Scaled problem: Two-dimensional case

Consider the elliptic partial differential equation
—Au+ 100i (e*¥u) + 1002 (e7"¥u) — 10u = f (17)
or oy

on a square region with Dirichlet boundary conditions, discretized with a five-point centered
finite-difference scheme on a n, x n, grid, excluding boundary points. The mesh is mapped
to a virtual p, x p, grid of processors, such that a subrectangle of 7, = n,/p, points in the
direction and r, = n,/p, points in the y direction is mapped to a processor. In the following
experiments, the mesh-size in each processor is kept constant at r, = 100,7, = 100. As the
number of processors increases, the problem size increases proportionally. For example, on 4
processors the mesh is (2r;,2r,) leading to a problem size of 40,000 and on 64 processors the
mesh is (8, 8r,) leading to a problem size of 640, 000. The resulting problems become harder
as the number of processors grows. In a perfectly scalable situation, the final execution time
for solving the problem with size n = 640,000 on 64 PEs should be identical with the time for
solving the problem of size n = 40,000 on 4 PEs. Note that in order to maintain the aspect
ratio of the physical domain, we need to consider square processor grids of increasing size.
The results have been obtained on an SGI Origin 3800. The residual norm reduction of
10~% was achieved by flexible GMRES (FGMRES) [8] with subspace size of 100. The fill-in
parameter 1£il is taken as 60 for all the levels of recursion along with the dropping tolerance
of 107*. The group-independent set size is 20. Timing and iteration results for the fixed local
subproblem sizes of 100 x 100 are presented in Figures 6 and 7 (top and bottom, respectively).
As shown in Figure 6, the total solution times for the Additive Schwarz preconditioners
with five inner iterations are larger than for the corresponding preconditioners without inner

Copyright © 2002 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2002; 9:1-25
Prepared using nlaauth.cls

PARMS: A PARALLEL ALGEBRAIC RECURSIVE MULTILEVEL SOLVER 15

Table I. Comparison of preconditioners for 3D PDE problem

NP =38 NP = 27 NP = 64
Preconditioner iter | time || iter | time || iter | time
add_arms no its 24 15.64 32 19.31 41 25.72
add_arms no its ovp 13 13.58 20 18.05 26 22.37
sch_arms 10 15.10 14 19.35 20 30.31
sch_gilu0 8 13.9 11 18.26 15 31.35
sch_gilu0 no its 15 12.98 22 16.72 29 20.93
sch_sgs 8 15.68 11 | 20.73 14 | 28.83
sch_sgs no its 13 | 13.72 19 | 17.12 24 | 22.00

iteration. For Additive Schwarz, the presence of inner iterations does not reduce the number
of outer iterations in a significant way. Additive Schwarz with ARMS as a local preconditioner
uses less time than Additive Schwarz with ILUT as a local preconditioner although their
corresponding iteration numbers are close. The reason is that Additive Schwarz with ARMS
requires less memory in both construction and solution. Figures 6 and 7 confirm the advantages
of using overlapping in Additive Schwarz.

Figure 7 shows a comparison of two-level preconditioners with various Additive Schwarz
procedures. It is noticeable that sch_gilu0 and sch_sgs outperform the other methods for
this test case. The performance of sch_ilut has also been tested. However, it is not shown in
the Figures since this method was not found to be faster than sch_gilu0 or sch_sgs and its
advantages over add_ilut have been shown in our earlier work [16]. Note a rather interesting
spread in the number of iterations for the various methods. It is also remarkable that sch_sgs
and sch_gilu0 require an almost identical number of steps to converge, both when inner
iterations are performed and when no inner iterations are performed.

5.8. Scaled problem: Three-dimensional case

We solve an analogue of (17), on a three-dimensional cube. The PDE is expressed in an
identical way as in (17) but the Laplacean is three-dimensional, i.e., there is no convective
term along the z direction. The PDE is set on a cube with Dirichlet boundary conditions, and
it is discretized with a seven-point centered finite-difference scheme on a n, x ny x n, grid,
excluding boundary points.

The experiments have been performed on 8, 27, and 64 processors of an IBM SP with the
same parameters as in two-dimensional case. In Table I, the columns iter and time contain
iterations numbers and total times, respectively. It can be seen that, for this problem type,
sch_gilu0 no its outperforms other methods mainly because it requires less computational
work.

5.4. Comparison of pARMS and PSPASES

We now compare pARMS with a parallel sparse direct solver. Among the parallel solvers
available to us, we selected to use PSPASES (Scalable Parallel Direct Solver Library for Sparse

Copyright © 2002 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2002; 9:1-25
Prepared using nlaauth.cls

16

Z. LI, Y. SAAD AND M. SOSONKINA

100 x 100 mesh per processor — Wall-Clock Time

20
=8~ add_arms
18- ‘W' add_arms no its % |
—+= add_arms ovp Phe
=f= add_arms ovp no its e
w6k | add_ilut x” B
add_ilut no its K
=0~ add_ilut ovp \,\’
O | [== add_ilut ovp no its Piie i
-8 14 *
o o4
O 1Hl R4 i
@ 12 ,
b .
8 101 b
[e'e]
o™
c 8r 1
>
5 |
4k i
oL i
0
0 10 20 30 40 50 60 70 80 90
Processors
100 x 100 mesh per processor — Iterations
100 T T T T T T
=8~ add_arms
"y add_arms no its
90H == add_arms ovp |
=f add_arms ovp no its
+# . add_ilut
add_ilut no its
80 -~ add_ilut ovp q
=~ add_ilut ovp no its
701 q
]
g 60 1
=1
]
S
O 50f g
=
40f 1
30 B
201 1
10 L L L L L L L L
0 10 20 30 40 50 60 70 80 90
Processors

Figure 6. Solution times (top) and iterations (bottom) for a 2D PDE problem with the fixed

subproblem size using variations of Additive Schwarz preconditioner.

Copyright © 2002 John Wiley & Sons, Ltd.

Prepared using nlaauth.cls

Numer. Linear Algebra Appl. 2002; 9:1-25

PARMS: A PARALLEL ALGEBRAIC RECURSIVE MULTILEVEL SOLVER 17

100 x 100 mesh per processor — Wall-Clock Time

35

N
N wn w

Origin 3800 seconds

=
wn

=B add_arms no its

‘W' add_arms ovp no its

== sch_arms

=h= sch_giluo

% sch_gilu0 no its
sch_sgs

=0~ sch_sgs noits

0.5
0

100

90

80

70

60

50

Iterations

40

30

20

10

90
Processors
100 x 100 mesh per processor — Iterations
=B- add_arms no its
=7~ add_arms ovp no its B
== sch_arms
~f= sch_giluo
+# sch_gilu0 no its B
sch_sgs
=~ sch_sgs no its
1‘0 2‘0 3‘0 4‘0 5‘0 6‘0 7‘0 8‘0 90
Processors

Figure 7. Solution times (top) and iterations (bottom) for a 2D PDE problem with the fixed
subproblem size using four different preconditioners.

Copyright © 2002 John Wiley & Sons, Ltd.

Prepared using nlaauth.cls

Numer. Linear Algebra Appl. 2002; 9:1-25

18 Z. LI, Y. SAAD AND M. SOSONKINA

Table II. Comparison of pARMS and PSPASES for a 2D problem

sch_gilu0 PSPASES
NP || TTIME | CTIME | STIME | TTIME | FTIME | STIME
4 0.78 0.47 0.29 0.67 0.63 0.045
8 0.99 0.56 0.41 0.75 0.70 0.05
16 1.20 0.55 0.64 1.14 1.07 0.07
32 1.74 0.69 1.04 1.77 1.68 0.09
64 2.97 0.79 2.17 3.19 3.03 0.16

Table III. Comparison of pARMS and PSPASES on a 3D problem

sch_gilu0 PSPASES

NP | TTIME | CTIME | STIME || TTIME | FTIME | STIME
8 10.70 5.44 5.24 86.17 85.50 0.67
64 27.78 7.92 19.85 * * *

Symmetric Positive Definite Linear Systems) [31]. Because PSPASES is a static code in the
sense that it does a symbolic factorization prior to the numerical factorization, it is extremely
efficient. On the other hand the code is restricted to solving Symmetric Positive Definite
matrices. Another restriction is that the number of processors should be a power of 2. For the
tests, we use simply the Poisson equation

—Au=f (18)

on two-dimensional rectangular region with Dirichlet boundary conditions. The problem is
discretized as in the previous examples, with centered finite differences. In the first experiment,
we solve a two-dimensional Poisson equation and select the mesh size on each processor
to be 100 x 100. PSPASES has been used with the default parameters supplied with the
package distribution. In Table II, TTIME, CTIME, FTIME, and STIME stand for total time,
preconditioner construction time, factorization time, and solution time respectively. All times
are in seconds on the SGI Origin 3800. As shown in Table II, for two-dimensional problem
and small numbers of processors (fewer than 64), PSPASES is better than pARMS. On 64
processors, pARMS is slightly faster than PSPASES. In the next test, we solve the Poisson
equation on a three-dimensional cube with Dirichlet boundary conditions. The problem size
is 30 x 30 x 30 per processor. The timing results are presented in Table III, in which the
columns have the same meaning as in Table IT and an asterisk indicates that the direct solver
failed due to insufficient memory. For this problem, sch_gilu0 is much faster than PSPASES,
as Table III shows. This comparison gives only a rough idea on the relative performance of
pARMS and PSPASES since pARMS is not yet an optimized code. In addition, the pARMS
iterative solution of the system does not take advantage of the problem symmetry. Other
direct solution codes we have tried were either too slow or not ready for a distributed parallel
environment.

Copyright © 2002 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2002; 9:1-25
Prepared using nlaauth.cls

PARMS: A PARALLEL ALGEBRAIC RECURSIVE MULTILEVEL SOLVER 19

5.5. A problem issued from magnetohydrodynamic flow

The linear system solved in this section is a fairly hard problem which arises from
Magnetohydrodynamic (MHD) flows. The flow equations are represented as coupled Maxwell’s
and the Navier-Stokes equations. The conservative magnetohydrodynamic system is modeled
by the Maxwell equations, written as:

oB
— - Vx(uxB)+75Vx(VxB)+Vq = 0 (19)

at
V-B = 0, (20)

where 7, B, u and ¢ are, respectively, the magnetic diffusivity coefficient, magnetic induction
field, velocity field, and the scalar Lagrange multiplier for the magnetic-free divergence
constraint. In fully coupled magnetohydrodynamics, this system is solved along with the
incompressible Navier-Stokes equations

a—u+(u-V)u—1/V2u+Vp = f (21)

ot
V-u = 0, (22)

where p, v and f are, respectively, pressure, kinematic viscosity, and body force. The coupling
between the two systems is through the body force f = %(V x B) x B, which represents the

Lorentz (Laplace) force due to the interaction between the current density j = =(V x B) and
the magnetic field, where p is the magnetic permeability.

It is uncommon to solve the fully coupled problem described by the equations (19-22) along
with their coupling via the body forces, because this usually requires an excessive amount
of memory. Instead, segregated approaches are often applied which alternatively solve the
two coupled problems until a certain convergence criterion is satisfied. For time-dependent
problems, these coupling iterations are embedded into the time-stepping procedure. For a few
details on this problem, its discretization, and the segregated solution procedure see [32].

In the tests that follow, we solve problems which arise from the Maxwell equations only.
In order to do this, a pre-set periodic induction field u is used in Maxwell’s equation (19).
The physical region is the three-dimensional unit cube [—1,1]® and the discretization uses
a Galerkin-Least-Squares discretization. The magnetic diffusivity coefficient is » = 1. Two
systems were generated. The first one (denoted by MHD1) has n = 485,597 unknowns and
24,233,141 nonzero elements. As was mentioned above the function ¢ in (19) corresponds to
Lagrange multipliers, which arise from imposing the magnetic-free divergence constraint. Its
gradient should be zero at steady-state. The second system is obtained by simply imposing
Dirichlet boundary conditions for ¢. This results in a slightly smaller linear system of size
n = 470,596 equations and nnz = 23,784,208 nonzeros. As it turns out, the second system
is slightly easier to solve by iterative methods than the first one. Though the actual right-
hand side was supplied, we preferred to use an artificially generated one in order to check the
accuracy of the process. A random initial guess was taken. Little difference in performance
was seen when the actual right-hand and a zero vector initial guess were used instead.

The following input parameters have been chosen to solve this problem: the residual is to
be reduced by 10, the FGMRES restart value is 60, and at most five inner iterations may
be allowed at each preconditioner application to attain 0.01 accuracy of the residual norm
reduction. The parameters for ARMS are as follows: the number of levels, the independent-set

1
m

Copyright © 2002 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2002; 9:1-25
Prepared using nlaauth.cls

20 Z. LI, Y. SAAD AND M. SOSONKINA

block size, fill-in factors, and dropping tolerances for the intermediate and the last levels are 5,
5000, 60, 60, 1075, and 10™%, respectively. Large block size and fill-in factors are prompted by
the hardness of the problem. The resulting total number of nonzero memory locations required
for the preconditioner was about 2.5 times the number of nonzeros in the original matrix. We
observed that all the methods without inner iterations experienced stagnation for the MHD1
problem. Additive Schwarz (add_arms no its) with or without overlap does not converge
for any number of processors while the Schur global ILU(0) (sch_gilu0 no its) stagnates
when executed on more than nine processors. On four and nine processors, sch_gilu0 no its
converges in 188 and 177 iterations, respectively. On an IBM SP, this amounts to 2,223.43
and 1,076.27 seconds, respectively. This is faster than 2,372.44 and 1,240.23 seconds when
five inner iterations are applied and the number of outer iterations decreases to 119 and
109 on four and nine processors, respectively. The benefits of iterating on the global Schur
complement system are clear since the Schur complement-based preconditioners converge for
all the processor numbers tested as indicated in Figure 8, which shows the timing results (top)
and outer iteration numbers (bottom). This positive effect can be explained by the fact that
the Schur complement system is computed with good accuracy.

Comparing the two preconditioners in Figure 8 (bottom), we observe that sch_gilu0
always requires fewer than sch_arms outer iterations and shows no iteration increase with the
increase in processor numbers. The construction of sch_arms, however, is somewhat cheaper
(cf. the “star” and “cross” curves in Figure 8, top) because it involves no interprocessor
communication. The sch_gilu0 application time advantage, seen for smaller processor
numbers, vanishes as more processors are used (cf. the “rhombus” and “triangle” curves) since
the cost of sch_gilu0 increases compared with that of sch_arms as the number of processors
increases, whereas the difference in numbers of iterations stays almost constant, for the MHD1
problem.

The MHD?2 problem is easier to solve. In fact, this is a good example where iterating on the
global Schur Complement is not mandatory. The convergence may be achieved with a simple
Additive Schwarz-type preconditioner (add-arms no its) without overlapping, which, in this
case, is quite competitive with respect to time (Figure 9, top). This is in spite of the rather
high iteration counts for add_arms no its, relative to the other methods tested (Figure 9,
bottom). All the Schur complement techniques produce fewer iterations to convergence.
Applying sch_gilu0 without inner iteration decreases solution times and makes sch_gilu0
no its faster than add_arms not its up to 32 processors.

In summary, the purpose of presenting these two examples of realistic problems is to show the
flexibility of the developed pARMS framework. The difficulty and size of the problem at hand
can call for a more powerful preconditioner, which can be readily provided by increasing fill-in
and allowing more iterations on the global Schur complement variables. For easier problems
(e.g., MHD2), Additive Schwarz methods or inexpensive variations of Schur complement
techniques may be adequate and are provided as particular cases within the pARMS package.

6. A comparison with other parallel preconditioners

We have found only a limited selection of packages which include parallel preconditioners for
general sparse linear systems. Among these we have selected the implementations available in
the hypre package [13] from Lawrence Livermore National Laboratory for a comparison. This

Copyright © 2002 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2002; 9:1-25
Prepared using nlaauth.cls

PARMS: A PARALLEL ALGEBRAIC RECURSIVE MULTILEVEL SOLVER 21

MHD1 problem (n=485,597 nnz=24,233,141)

1800
== sch_arms construct.
=# sch_gilu0 construct.
1600 - =0~ sch_arms application | _|
== sch_gilu0 application
3
c 1400 - -
o
)
bl 1200 - 4
)
& 1000 i
=
S
2 800 4
(&)
L
(—6 600
=
O 400t il
(92}
200 4
0 L L L L L L
0 5 10 15 20 25 30 35
Processors
MHD1 problem (n=485,597 nnz=24,233,141)
190 T T T T T T
180 B
170 4
160 B
== sch_arms
n == sch_gilu0
c L 4
. 9 150
=
]
p—
© 1401 B
=
130 B
120 B
110 4
100 Il Il Il Il Il Il
5 10 15 20 25 30 35
Processors

Figure 8. Timing results (top) and outer iterations (bottom) for the (fixed-size) MHD1 problem.

Copyright (© 2002 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2002; 9:1-25
Prepared using nlaauth.cls

22 Z. LI, Y. SAAD AND M. SOSONKINA

MHD2 problem (n=470,596 nnz=23,784,208)

2000
== sch_arms
=%~ sch_giluo
1800 == sch_gilu0 no i.ts i
== add_arms no its
3
c 1600 -
o
)
b} 1400 -
)
& 1200
=
S
2 1000
(&)
_I 800
c
=
O e00f
(92}
400
200
0 5 10 15 20 25 30 35 40
Processors
MHD2 problem (n=470,596 nnz=23,784,208)
160 T T T T T T T
140 B
== sch_arms
=h= sch_gilu0
== sch_gilu0 no its
1201 -8~ add_arms no its]
(2]
C 100 b
i)
=]
]
p—
2 o g
60 B
— ——
a0f T e e N N 1
20 Il Il Il Il Il Il Il
0 5 10 15 20 25 30 35 40
Processors

Figure 9. Solution times (top) and outer iterations (bottom) for the (fixed-size) MHD2 problem.

Copyright © 2002 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2002; 9:1-25
Prepared using nlaauth.cls

PARMS: A PARALLEL ALGEBRAIC RECURSIVE MULTILEVEL SOLVER 23

Table IV. Preconditioners in the hypre package for the MHD2 problem

Proc. PILU(1) PILUT(GO,IO*‘*) PILUT(80710*5)
Iter. | Sol., s Iter. | Sol., s | Iter. | Sol., s

4 81 | 1,573.63 769 | 1,397.71 722 | 1,570.74

9 103 | 1,461.50 576 705.45 490 | 1,226.09

package currently has the most exhaustive selection of parallel preconditioners. In particular, it
includes the following options for general sparse linear systems: algebraic multigrid (Boomer-
AMG [14]), approximate inverse techniques (ParaSails [33]), a distributed-memory version
of parallel ILUT (PILUT [34]), and a parallel level-based ILU(k) (PILU(k) [30]). All of
these preconditioners have been tested on four and nine processors, a processor subset used
for pARMS, to solve the MHD2 problem, the easier of the two magnetohydrodynamic flow
problems. We attempted to construct the preconditioners such that they yield a number of
nonzero elements that is comparable with that of the preconditioners tested in the pARMS
framework, which is about 2.5 times the number of nonzeros in the original matrix. Note that
this actually requires a significant amount of trial and error.

We show the results for the two instances of the PILUT preconditioner. In the first, the
fill-in /drop-tolerance parameter pair is taken as 60/10~* and in the second, as 80/10~°. For
parallel ILU(k), the fill level of one gives approximately the desired number of nonzeros. The
GMRES restart value and convergence tolerance were set as in the pARMS experiments with
this matrix. In ParaSails and Boomer-AMG, the default values for all the preconditioner-
specific parameters were taken (see [13] for their values). Table IV shows the obtained results
for PILUT and PILU(1). Boomer-AMG did not converge in 1,000 iterations and ParaSails
exceeded the three-hour limit imposed on the problem solution time.

The columns Iter and Sol display the number of iterations to converge and the solution
time, respectively. Note that, for PILU(1), the number of iterations is comparable with
add_arms no its with a better timing on the four processors and almost double the timing
on the nine processors. The PILUT(60,10~%) factorization has resulted in a much sparser
preconditioner than that of preconditioners in pARMS, which appears to be sufficient for
convergence but with very large iteration numbers. The high degree of sparsity of the
preconditioner results in much less costly preconditioning operations. The more accurate
factorization PILUT(80,107%) leads to a reduction in the number of iterations. However, in
spite of this reduction, the solution time increases substantially when scaled by the number of
processors, when going from four to nine processors. The success of PILUT with a very sparse
preconditioner is not too surprising for this is rather easy problem. However, the unexpected big
increase of the scaled time for the more realistic case involving a more accurate factorization,
raises the question of scalability for this preconditioner. Only a more exhaustive test, involving
more problems, and more processors would enable us to reach any conclusion in this regard.
Such exhaustive comparisons are beyond the scope of this paper.

Copyright © 2002 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2002; 9:1-25
Prepared using nlaauth.cls

24 Z. LI, Y. SAAD AND M. SOSONKINA

7. Conclusion

The Algebraic Recursive Multilevel Solvers constitute a viable framework for developing a large
array of preconditioners for parallel environments. This framework offers many possibilities
ranging from simple Additive Schwarz with or without overlapping, to more complex Schur
complement techniques. These techniques are developed for the general sparse irregularly
structured linear systems. Experiments confirm what is already known from theory, namely
that scalability as well as robustness may suffer when simple Additive Schwarz procedures
are used. For harder and larger problems, it is essential to use a truly multilevel method, and
this again is already known from general theory. It was also shown that inner iterations at the
Schur complement level are essential in this case. While direct solvers are still very competitive
for 2-D problems, they are likely to be far inferior, or even to fail, for reasonable size 3-D cases,
as was shown in Section 5.3.

Not yet explored in this paper are methods which extend the ARMS recursive reduction
into the interdomain interface variables. It remains to be seen whether this further step, which
is much more complex to implement, is mandated for much larger problems.

ACKNOWLEDGEMENTS

We would like to thank Azzeddine Soulaimani and Ridha Touihri from the “Ecole de Technologie
Superieure, Université du Québec”, for their generous help in supplying us with the realistic test
problems of Section 5.5.

REFERENCES

1. Saad Y. ILUM: a multi-elimination ILU preconditioner for general sparse matrices. SIAM Journal on
Scientific Computing 1996; 17(4):830-847.

2. Botta EFF, van der Ploeg A, Wubs FW. A fast linear-system solver for large unstructured problems
on a shared-memory computer. In Proceedings of the Conference on Algebraic Multilevel Methods with
Applications, Axelsson O, Polman B (eds). 1996; 105-116.

3. Botta EFF, Wubs FW. MRILU: it’s the preconditioning that counts. Technical Report W-9703,
Department of Mathematics, University of Groningen, The Netherlands, 1997.

4. Saad Y, Zhang J. BILUM: Block versions of multi-elimination and multi-level ILU preconditioner for
general sparse linear systems. SIAM Journal on Scientific Computing 1999; 20:2103-2121.

5. Saad Y, Zhang J. BILUTM: A domain-based multi-level block ILUT preconditioner for general sparse
matrices. SIAM Journal on Matriz Analysis and Applications 2000; 21:279-299.

6. Saad Y, Suchomel B. ARMS: an algebraic recursive multilevel solver for general sparse linear systems.
Numerical Linear Algebra with Applications 2002; 9:359-378.

7. Saad Y, Sosonkina M, Zhang J. Domain decomposition and multi-level type techniques for general sparse
linear systems. In Domain Decomposition Methods 10, Mandel J, Farhat C, Cai XC (eds). American
Mathematical Society: Providence, 1998; 174-190.

8. Saad Y. Iterative Methods for Sparse Linear Systems. PWS publishing: New York, 1996.

9. Bank R, Wagner C. Multilevel ILU decomposition. Numerische Mathematik 1999; 82:543-576.

10. Bank R, Smith RK. An algebraic multilevel multigraph algorithm. SIAM Journal on Scientific Computing
2002; 23:1572-1592.

11. Broker O, Grote MJ, Mayer C, Reusken A. Robust parallel smoothing for multigrid via sparse approximate
inverses. SIAM Journal on Scientific Computing 2002; 23:1396-1417.

12. Notay Y. Using approximate inverses in algebraic multilevel methods. Numerische Mathematik 1998;
80:397-417.

13. Chow E, Cleary A, Falgout R. HYPRE User’s manual, version 1.6.0. Technical Report UCRL-MA-137155,
Lawrence Livermore National Laboratory, Livermore, CA, 1998.

Copyright © 2002 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2002; 9:1-25
Prepared using nlaauth.cls

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

PARMS: A PARALLEL ALGEBRAIC RECURSIVE MULTILEVEL SOLVER 25

Henson VE, Yang UM. BoomerAMG: a parallel algebraic multigrid solver and preconditioner. Applied
Numerical Mathematics 2002; 41:155-177.

Tuminaro R, Tong C. ML 2.0 smoothed aggregation user’s guide. Technical Report SAND2001-8028,
Sandia National Laboratories, Albuquerque, NM, Dec. 2000.

Saad Y, Sosonkina M. Distributed Schur complement techniques for general sparse linear systems. SIAM
Journal on Scientific Computing 1999; 21(4):1337-1356.

Botta EFF, van der Ploeg A, Wubs FW. Nested grids ILU-decomposition (NGILU). Journal of
Computational and Applied Mathematics 1996; 66:515-526.

Leuze R. Independent set orderings for parallel matrix factorizations by Gaussian elimination. Parallel
Computing 1989; 10:177-191.

Wagner C. Introduction to Algebraic Multigrid - Course Notes of an Algebraic Multigrid Course at the
University of Heidelberg in the Wintersemester, 1998/99.

Saad Y, Sosonkina M. Enhanced parallel multicolor preconditioning techniques for linear systems. In 9th
SIAM Conference on Parallel Processing for Scientific Computing. STAM: Philadelphia, 1999.

Bjgrstad PE. Multiplicative and Additive Schwarz Methods: Convergence in the 2 domain case. In Domain
Decomposition Methods, Chan T, Glowinski R, Périaux J, Widlund OB (eds). SIAM: Philadelphia, 1989;
147-159.

Bjgrstad PE, Widlund OB. To overlap or not to overlap: A note on a domain decomposition method for
elliptic problems. SIAM Journal on Scientific and Statistical Computing 1989; 10(5):1053-1061.

Cai XC, Gropp WD, Keyes DE. A comparison of some domain decomposition and ILU preconditioned
iterative methods for nonsymmetric elliptic problems. Numerical Linear Algegra with Applications 1994;
1:477-504.

Gropp WD, Smith BF. Experiences with domain decomposition in three dimensions: Overlapping Schwarz
methods. In Proceedings of the Sixth International Symposium on Domain Decomposition Methods,
Quarteroni A, Périaux J, Kuznetsov YA, Widlund OB (eds). American Mathematical Society, 1993; 323—
333.

Benzi M, Frommer A, Nabben R, Szyld D. Algebraic theory of overlapping Schwarz methods. Numerische
Mathematik 2001; 89:605-639.

Cai XC, Sarkis M. A restricted additive Schwarz preconditioner for general sparse linear systems. SIAM
Journal on Scientific Computing 1999; 21:792-797.

Little L, Li Z, Choi HG, Saad Y. Particle partitioning strategies for the parallel computation of solid-liquid
flows. Computers and Mathematics with Applications 2002; 43:1591-1616.

Kuznetsov S, Lo GC, Saad Y. Parallel solution of general sparse linear systems using PSPARSLIB. In
Domain Decomposition XI, Lai CH, Bjgrstad P, Cross M, Widlund OB (eds). Domain Decomposition
Press: Bergen, 1999; 455-465.

Soulaimani A, Rebaine A, Saad Y. Parallelization of the edge-based stabilized finite element method. In
Parallel Computational Fluid Dynamics, Teraflops, Optimization, and novel formulations. North Holland,
2000; 397-406.

Hysom D, Pothen A. A scalable parallel algorithm for incomplete factor preconditioning. SIAM Journal
on Scientific Computing 2001; 22(6):2194-2215.

Joshi M, Karypis G, Kumar V, Gupta A, Gustavson F. PSPASES: Scalable parallel direct solver library
for sparse symmetric positive definite linear systems — user’s manual (version 1.0.3). Technical Report
TR_97-059, Department of Computer Science, University of Minnesota, Minneapolis, MN, 1997.
Soulaimani A, Salah NB, Saad Y. Enhanced GMRES acceleration techniques for some CFD problems.
International Journal of Computational Fluid Dynamics 2002; 16(1):1-20.

Chow E. A priori sparsity patterns for parallel sparse approximate inverse preconditioners. SIAM Journal
on Scientific Computing 2000; 21:1804-1822.

Karypis G, Kumar V. Parallel threshold-based ilu factorization. Technical Report TR_96-061, Department
of Computer Science, University of Minnesota, Minneapolis, MN, 1996.

Copyright © 2002 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2002; 9:1-25
Prepared using nlaauth.cls

