Granularity of Component Interfaces for Iterative
Linear Algebra

J. Jones L. Liu M. Sosonkina

Abstract— Large-scale systems of linear equations often use
parallel iterative methods to approximate solutions. They also
transform (precondition) the given system, making it easier to
solve. SPARSKIT contains a wide array of preconditioning and
accelerating techniques to choose from depending on system
matrix properties. In our earlier work, SPARSKIT, originally
written in FORTRANT77, was redesigned into a set of compo-
nents based on the Common Component Architecture (CCA)
standards, which enable usability and extensibility of the package
with novel preconditioners.

Although a linear solver is often a computationally-intensive
part of a high-performance application, separate components of
a linear system solution may be relatively light-weight. The com-
ponent architecture, however, has the potential to add overhead.

In this paper, we examine the computational overheads caused
by various design choices for iterative linear solver components,
ranging from low-level, such as components for matrix manip-
ulation, to high-level, such as single component containing the
entire linear solver.

Index Terms— Common Component Architecture, SPARSKIT,
Linear Algebra

I. INTRODUCTION

To solve large-scale systems of linear equations, parallel
iterative methods are often used. For difficult systems, they
approximate the solution while transforming (preconditioning)
the given system to make it easier to solve. In particular,
the SPARSKIT [9] package contains a wide array of pre-
conditioning and accelerating techniques, which the user may
mix and match depending on system matrix properties. In our
earlier work, SPARSKIT, originally written in FORTRAN77
and developed by Yousef Saad at the University of Minnesota,
has been redesigned into a set of components based on the
Common Component Architecture (CCA) [6] standards, which
enable usability and extensibility of the package with novel
solution methods. The CCA group is comprised of researchers
from different national laboratories and academic institutions
whose goal is to define a standard component architecture
for high performance computing. Babel [8], developed at
Lawrence Livermore National Laboratory, is used to enable
language interoperability in the CCA Tools. Babel uses the
Scientific Interface Definition Language (SIDL) to define
component interfaces. SIDL is designed to address the needs
of parallel scientific computing, specifically complex numbers,
dynamic multi-dimensional arrays, and parallel communica-
tion directives.

Although a linear solver is often a major computationally-
intensive task of a high-performance application, separate parts

This work was supported in part by the U.S. Department of Energy under
Contract W-7405-ENG-82

Ames Laboratory, lowa State University, Ames, IA
{i onesj, lexinliu, masha}@cl .anesl ab. gov

50011,

of a linear system solution, due to their iterative nature, may be
relatively light-weight. However, the component architecture
overhead — if incurred at every iteration, for example, —
may significantly undermine their efficiency. Therefore, it is
desirable to minimize component overhead while preserving
flexibility and extensibility of the SPARSKIT package.

This paper is organized as follows: Section Il provides a
discussion of a few projects incorporating sparse linear algebra
component designs. In Section Ill, we outline three design
choices that we have considered when creating sparse linear
algebra components. We examine the computational overheads
incurred while solving a system of partial differential equations
(PDE) with iterative linear solver components (Section V).

Il. RELATED WORK

The Matrix Template Library [11] is a high-performance
generic component library that provides comprehensive linear
algebra functionality for a wide variety of matrix formats.
The MTL uses a five-fold approach, consisting of generic
functions, containers, iterators, adaptors, and function objects
developed for high performance numerical linear algebra. The
containers, iterators, and adaptors are used to represent and
manipulate linear algebra objects such as matrices. Using
an optimizing compiler the MTL has been able to produce
performance equal to and sometimes better than vendor-tuned
math libraries such as the Sun Performance Library.

Argonne National Laboratory has developed PETSc [3], a
suite of data structures and routines for scalable (parallel) so-
lution of scientific applications modeled by partial differential
equations. PETSc has implemented a broad range of parallel
and sequential algorithms as well as support for linear and non-
linear solvers, distributed arrays, and parallel matrix and vector
operations. The current version of PETSc is not component-
oriented, but there are plans for the next major version to deal
with components.

Many packages exist that use a “high-level”-like design.
One such project is the Terascale Optimal PDE Simulations
(TOPS) solver interfaces [1]. TOPS is an integrated software
infrastructure focused on developing, implementing, and sup-
porting optimal or near optimal schemes for partial differential
equation-based simulations and closely related tasks, including
optimization of PDE-constrained systems, sensitivity analysis,
eigenanalysis, adaptive time integration, and core implicit
linear and nonlinear solvers. A common interface for the
TOPS software infrastructure has been developed and is being
integrated into CCA. The idea for the next generation of the
PETSc solvers was to use the TOPS SIDL interfaces and
extend them.

The Scalable Linear Solvers project at Lawrence Livermore
National Laboratory developed hypr e [7], a library of high-
performance preconditioners that features parallel multi-grid
methods for both structured and unstructured grid problems.
While not currently being implemented using the CCA,
hypr e has developed some sample SIDL interfaces and
currently has a development version that uses Babel.

One current effort at the University of Indiana is the devel-
opment of the Linear Solver Interfaces [5]. The development
of the LSI was started in May 2005 and there currently exists
a draft of the SIDL interfaces released. The goal of LSI is to
provide a high abstraction on top of the current linear solver
libraries and allow applications to be loosely tied to the library
they use to make switching the library easier. The current
SIDL interfaces support iterative and direct solvers and have
an implementation for PETSc, Trilinos, and SuperLU in C++
using the CCA.

Trilinos is an effort from Sandia National Laboratory to
develop and implement robust parallel algorithms using a
modern object-oriented design and to leverage the value of
established numerical libraries like PETSc, Aztec, BLAS, and
LAPACK [2]. It emphasizes abstract interfaces for maximum
flexibility of component interchanging, and provides a full-
features set of concrete classes that implement all abstract
interfaces. Trilinos currently contains serial direct solvers, par-
allel direct solvers, non-linear solvers, complex linear solvers,
Krylov linear solvers, and numerous other numerical and linear
algebra capabilities. One of the newer features is support
for the Python scripting language and allowing for users to
develop their own matrix modules in Python that can be used
by Trilinos solvers.

I1l. DESIGN CHOICES
A. Low-Level

The low-level design choice refers to operating on objects
such as matrices directly. One low-level component that we
have developed is the BLASSM component that is for use
with our SPARSKIT Components. BLASSM stands for Basic
Linear Algebra Subroutines with Sparse Matrices. It includes
computations for two matrices and also computations for a
matrix and a vector. The component form of BLASSM extends
the SPARSKIT functionality by not requiring the user to
know which variation of a function to call. This feature is
accomplished through the overloading of functions in C++.
Function overloading refers to allowing for the specification
for more than one function of the same name in the same
scope. This is a useful programming language feature available
in object-oriented languages such as C++ and Java as well
as non-object-oriented languages such as FORTRAN90. For
example, the user only needs to call a generic function AMUB
to perform a general sparse matrix-matrix multiplication and
the function will then determine which form of AMUB needs
to be called: When the input arguments to AMUB are two
matrices in the Compressed Sparse Row (CSR) storage for-
mat, the implementation of AMUB for the CSR format is
called. Such a design allows more flexibility in terms type-
agnostic code. However, it also may have the disadvantage of

potentially incurring overhead from the function overloading
in C++.

B. Medium-Level

A medium-level design choice represents a slightly
higher abstraction than the low-level design choice. In
particular, major steps of an iterative solution process are
encapsulated as components. They may include accelerators,
preconditioners, and matrix generation routines, whereas
matrix-vector multiply is not a separate component. For
a medium-level design, there is no function overloading,
but rather a component implementation for each possible
functionality choice. This can be more easily seen when
considering two different preconditioners. In a low-level
design, a call to the preconditioner would depend on
some information to determine which overloaded function
to call, but in a medium-level design the preconditioner
component interface that is connected implements only one
preconditioner and that will be the one that is called. In
the SPARSKIT suite of components, each of these function
calls — accelerator, preconditioner, and matrix generation
— are made into components. Each component interface is
designed such that it has a standard argument list to make the
interchanging of different implementations of the component
easier on the user. To illustrate the standard argument list, we
present an example of a call to a preconditioner port:

prec=Svc. get Port (" BasePrecondi ti oner");
prec.create(a,ja,ia,lf,dtol,alu,jlu,ju);

where a, j a, i a represent the matrix in the CSR format,
| f represents the maximum fill-in for each row of lower (L)
and upper (U) triangular matrices, dt ol is the tolerance for
dropping small factors, and al u, j | u, j u represent a matrix
stored in the Modified Sparse Row (MSR), see,example e.g.
[10], format containing both the L and U factors.

C. High-Level

The high-level design choice is the most abstracted of
the three design choices we present. A high-level design
has all of the functions needed (accelerators, preconditioners,
etc.) integrated into one package. One feature of this design
is the use of “set” and “get” methods. A user can call a
function such as set Precondi tioner ("ilut") to have
the component internally set the preconditioner it will use to
i | ut. The component may also have “get” methods that can
either return an object representing the currently set value or
alternatively can return a list of options for a “set” method or
to get the currently set option. An advantage to designing a
component in this way is that it allows for easier switching
between different libraries that implement the same interface.
This can be seen in packages such as LSI that aim to provide
easy access to a number of libraries through their interfaces.
There are drawbacks to this approach including difficulty of
integrating with libraries written in procedural languages such

[z | SKIT] SKIT-CCA [diff %]

776,760 0.0028 0.0036 28.57
122,880 || 0.00472 0.0062 31.35
179,800 || 0.00728 0.0088 20.88
247,520 || 0.00984 0.00122 23.98
326,040 || 0.01296 0.0152 17.28
415,360 || 0.01668 0.02 19.9
515,480 0.021 0.0254 17.59
TABLE |

COMPARISON OF SPARSKIT USING LOW-LEVEL BLASSM LIBRARY

as FORTRAN77 and C and potential overhead incurred from
object passing.

IV. TEST RESULTS

We have successfully created low- and medium-level com-
ponents in the BLASSM library and our previous work on a
suite of SPARSKIT components, respectively. Work on imple-
menting and benchmarking a high-level component interfaces
is currently underway. All necessary Ports are obtained at the
beginning of the test runs and are not released until the runs
are finished.

For testing the interfaces, we have considered the solution
of the 3-dimensional Laplacian partial differential equation:

2
A
z

with Dirichlet boundary conditions, discretized with seven-
point centered finite-difference scheme on n, x ny x n, grid.
These tests are run on an Intel XEON 2.2 GHz processor with
768MB RAM running Debian Sarge (3.1) and all software
used is compiled with the Debian-shipped GCC 3.3.5.

Tables | and Il show comparisons of original SPARSKIT
(column SKI T) and component implementations (column
SKI T- CCA) for low- and medium-level component designs,
respectively. Column nnz refers to the number of non-zero
elements in the matrix obtained for n, = n, = 40,50, ..., 100
and n, = 10, and column di ff shows the SKI T- CCA
overhead as percentage of the SKI T execution time.

The test results for BLASSM component timing(Table 1)
were obtained by calling the AMUB function with the matrices
in the CSR format as input arguments and taking the average
over ten calls, with standard deviations ranging from 5 x
1075 to 7.26 x 10~*. We observe that the average incurred
overhead varies from 17.28% to 32.45% after zero overhead
in the first two small problem sizes. It should be noted that
only part of the overhead incurred is from the component
framework (Ccafe [4]), while most of the overhead comes from
the function overloading done in the BLASSM component
implementation.

In Table 11, the execution times are from an average of ten
runs on each problem, with standard deviations ranging from
2.89 x 104 to 5.71 x 103, We have solved a linear system
with ILUT as the preconditioner, and flexible GMRES [10] as
the accelerator. The test was performed with calls to methods
provided by three different components - an accelerator, a
preconditioner, and a matrix-vector multiplication component

| nnz [iters | SKIT, sec [SKIT-CCA sec [diff, %|
76.760 59 0.0792 0.08 1
122,880 59 0.14 0.14 0
179,800 59 0.208 0.215 3.36
247,520 61 0.334 0.345 3.29
326,040 61 0.443 0.448 1.13
415,360 61 0.570 0.588 3.12
515,480 61 0.7185 0.730 1.6
TABLE Il
COMPARISON OF MEDIUM-LEVEL SPARSKIT ON 3D LAPLACIAN
EQUATION

| nnz [Function # Calls Tinme (msec) Norm %]
lusol 46 20 100.0
create 1 18 89.4
38,880 amux 47 12 63.4
apply 93 12 62.3
create 1 25 100.0
lusol 46 20 80.7
45,847 amux 47 13 52.8
apply 93 13 50.9
lusol 46 25 100.0
create 1 24 95.0
53,600 amux 47 16 64.6
apply 93 15 59.4
lusol 45 36 100.0
apply 96 31 86.6
62,181 create 1 27 75.6
amux 51 24 66.0
TABLE Il

PERFORMANCE ANALYSISUSING TAU

- in each step of the iterative solution process. Columni t er s
shows the number of iterations required for convergence.
These results only show a small overhead incurred by using
the Ccaffeine component framework. The percent of incurred
overhead appears to be relatively small and stable unlike
the overhead increase observed in the BLASSM component,
which may also depend on the number of matrix operations
performed.

We have used the Tuning and Analysis Utilities (TAU) [12]
Performance Component to do performance analysis on our
medium-level component. The results can be seen in Table I11.
Column nnz refers to the number of non-zero elements and
column Functi on refers to the function that was called.
The column Nor m %is a measure of the run-time of the
function compared to the largest run-time from that iterative
solution process. The performance analysis shows that we
spend the majority of our runtime in the | usol function
provided by the preconditioner component and the cr eat e
function, also provided by the preconditioner component, also
takes a significant amount of time in our tests.

V. CONCLUSIONS

In this paper we have described three different design
choices to consider when creating sparse linear algebra com-
ponents. Test results show that the medium-level maintains
a relatively stable overhead in terms of percentage of the
original runtime while the low-level implementation shows
a large overhead. Based on these results, the medium-level

design choice appears to be a feasible choice when creating a
sparse linear algebra component. In the future, we plan to have
a high-level component implemented to compare against our
current results to draw more concrete conclusions about the
feasibility of using each design choice when creating sparse
linear algebra components.

[1]
[2]

[3]

[4]

[5]

[6]
[71

(8]

[9]

[10]
[11]

[12]

REFERENCES

“Terascale optimal pde simulation (TOPS),” http://www-unix.mcs.anl.
gov/scidac-tops/.

“The trilinos project,” http://software.sandia.gov/trilinos.

S. Balay, K. Buschelman, W. Gropp, D. Kaushik, M. . Knepley,
L. Mclnnes, B. Smith, and H. Zhang., “PETSc web page,” http://mww.
mcs.anl.gov/petsc.

D. Bernholdt, W. Elwasif, J. Kohl, and T. Epperly, “A component
architecture for high-performance computing,” in Proceedings of the
Wbrkshop on Performance Optimization via High-Level Languages and
Libraries (POHLL-02), 2002.

R. Bramley and F. Liu, “Cca sparse linear solver interface,” http://www.
cs.indiana.edu/~ fangliu/lsi/intro.html.

“The common component architecture forum,” http://www.cca-forum.
org.

E. Chow, A. Cleary, and R. Falgout, “Hypre User’s manual, version
1.6.0,” Lawrence Livermore National Laboratory, Livermore, CA, Tech.
Rep. UCRL-MA-137155, 1998.

T. Dahlgren, T. Epperly, G. Kumfert, , and L. Leek, “Babel User’s
guide,” http://www.lInl.gov/CASC/components/docs/users _guide/index.
html.

Y. Saad, “SPARSKIT: a basic tool kit for sparse matrix computations,”
http://www-users.cs.umn.edu/~ saad/software/SPARSKIT/paper.ps.
——, lterative Methods for Sparse Linear Systems. SIAM, 2003.

J. G. Siek and A. Lumsdaine, “The matrix template library:
A generic programming approach to high performance numerical
linear algebra,” in ISCOPE, 1998, pp. 59-70. [Online]. Available:
citeseer.ist.psu.edu/article/siek98matrix.html

“Tuning and analysis utilities,” http://www.cs.uoregon.edu/research/tau/
home.php.

